FMR1 premutation (55-200 CGG repeats) results in fragile X-associated primary ovarian insufficiency (FXPOI). We evaluated expression levels of folliculogenesis-related mediators, follicle-stimulating hormone (FSH) receptor and anti-Mullerian hormone (AMH), to gain insights into the mechanisms underlying the reduced ovarian function. Mural granulosa cells (MGCs) were collected from FMR1 premutation carriers and noncarriers undergoing IVF treatments. At baseline, MGCs of carriers demonstrated significantly higher mRNA expression levels of AMH (3.5 ± 2.2, n = 12 and 0.97 ± 0.5, n = 17, respectively; p = 0.0003) and FSH receptor (5.6 ± 2.8 and 2.7 ± 2.8, respectively; p = 0.02) and higher AMH protein expression on immunostaining. Accordingly, FMR1 premutation-transfected COV434 cells exhibited higher AMH protein expression than COV434 cells transfected with 20 CGG repeats. We conclude that FMR1 premutation may lead to dysregulation of AMH expression levels, probably due to a compensatory mechanism. Elucidating the pathophysiology of FXPOI may help in early detection of ovarian dysfunction and tailoring IVF treatments to FMR1 premutation carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266831PMC
http://dx.doi.org/10.1038/s41598-021-93489-xDOI Listing

Publication Analysis

Top Keywords

fmr1 premutation
20
expression levels
16
premutation carriers
12
anti-mullerian hormone
8
mural granulosa
8
granulosa cells
8
cgg repeats
8
fsh receptor
8
ivf treatments
8
higher amh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!