Assessment of a Novel Vitamin D Formulation with Nanostructured Lipid Carriers for Transdermal Delivery.

Curr Drug Deliv

NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.

Published: May 2022

Objective: Develop and assess a transdermal emulsion loaded with nanostructured lipid carriers for vitamin D supplementation.

Methods: Vitamin D loaded nanostructured lipid carriers, produced via high shear homogenization and ultrasonication, were assessed for their particle size, distribution, morphology, zeta potential, entrapment efficiency, and cytotoxicity. They were incorporated into a transdermal vehicle, and the stability and ex vivo permeation were evaluated.

Results: Spherical nanoparticles were developed with a particle size of 192.5 nm, a polydispersity index of 0.13, a zeta potential of -29.0 mV, and an entrapment efficiency of 99.75%. They were stable (particle size and distribution) for 15 days when stored in a refrigerator, and for 30 days at room temperature and 32°C. The nanoparticles decreased the drug cytotoxicity against fibroblasts, as shown by IC (nanoparticle: 32.48 μg mL vitamin D: 16.73 μg mL). The emulsion loaded with nanoparticles minimized the degradation of vitamin D3 when compared with the nanoparticle dispersion. Additionally, the emulsion provided the skin permeation of vitamin D3 following the recommended daily allowance.

Conclusion: To the best of our knowledge, this is the first study to use nanostructured lipid carriers for transdermal delivery of vitamin D. The developed formulation is a promising strategy to overcome the vitamin D variable oral bioavailability. It also represents a comfortable route of administration; thus it could be beneficial for patients and clinicians. However, further studies are needed to allow the permeation of larger amounts of vitamin D3, and the combination of these nanoparticles with microneedles would be interesting.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201818666210708121304DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
16
lipid carriers
16
particle size
12
vitamin
9
carriers transdermal
8
transdermal delivery
8
emulsion loaded
8
loaded nanostructured
8
size distribution
8
zeta potential
8

Similar Publications

Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence.

J Nanobiotechnology

January 2025

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.

Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.

View Article and Find Full Text PDF

Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.

View Article and Find Full Text PDF

Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.

View Article and Find Full Text PDF

Green solid lipid nanoparticles by coacervation of fatty acids: An innovative cosmetic ingredient for the delivery of anti-age compounds through the skin.

Int J Pharm

January 2025

University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy; University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy.

The constant exposure of the skin to internal and external stimuli drives towards skin aging and lost in skin hydration and elasticity. Chronic low-grade inflammation, called inflammaging, and oxidative stress are the leading causes of this phenomenon. Fatty acid coacervation is a preparation method for Solid Lipid Nanoparticles (SLNs), which does not employ solvents, and is associated to low energy consumption.

View Article and Find Full Text PDF

Dexamethasone (Dex) is a primary medication for treating dry eye syndrome, and tobramycin-dexamethasone eye drops are commercially available. However, the eye's complex physiological environment reduces its bioavailability, and repeated use can lead to significant systemic toxicity and side effects. This study introduces a novel conjugate of chitosan (CS) and N-acetylcysteine (NAC), a bioadhesive material, which was grafted onto the surface of a Dex-supported nanostructured lipid carrier (NLC) to develop an innovative nanoparticle lipid ocular drug delivery system (CS-NAC@Dex-NLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!