A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water-Repellent Perovskites Induced by a Blend of Organic Halide Salts for Efficient and Stable Solar Cells. | LitMetric

Despite tremendous progress in the power conversion efficiency (PCE) of perovskite solar cells (PeSCs), the long-term stability issue remains a significant challenge for commercialization. In this study, by blending organic halide salts, phenylethylammonium halide (PEAX, X = I, Br), with CHNHPbI (MAPbI), we achieved remarkable enhancements in the water-repellency of perovskite films and long-term stability of PeSCs, together with enhanced PCE. The hydrophobic aromatic PEA group in PEAX protects the perovskite film from destruction by water. In addition, the smaller halide Br in PEABr restructures MAPbI to form MAPbIBr during post-annealing, leading to lattice contraction with beneficial crystallization quality. The perovskite films modified by PEAX exhibited excellent water resistance. When the perovskite films were directly immersed in water, no obvious decompositions were observed, even after 60 s. The PEAX-decorated PeSCs exhibited considerable long-term stability. Under high-humidity conditions (60 ± 5%), the PEAX-decorated PeSCs held 80.5% for PEAI and 85.2% for PEABr of their original PCE after exposure for 100 h, whereas the pristine PeSC device lost more than 99% of its initial PCE after exposure for 60 h under the same conditions. Moreover, compared to the pristine device with a PCE of 13.28%, the PEAX-decorated PeSCs exhibited enhanced PCEs of 17.33% for the PEAI device and 17.18% for the PEABr device.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09093DOI Listing

Publication Analysis

Top Keywords

long-term stability
12
perovskite films
12
peax-decorated pescs
12
organic halide
8
halide salts
8
solar cells
8
pescs exhibited
8
pce exposure
8
pce
5
perovskite
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!