Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial "late bloomer." Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a "molecular linguist." For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058554 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!