Glassy states in adsorbing surfactant-microgel soft nanocomposites.

J Phys Condens Matter

Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France.

Published: July 2021

Mixtures of polymer-colloid hybrids such as star polymers and microgels with non-adsorbing polymeric additives have received a lot of attention. In these materials, the interplay between entropic forces and softness is responsible for a wealth of phenomena. By contrast, binary mixtures where one component can adsorb onto the other one have been far less studied. Yet real formulations in applications often contain low molecular weight additives that can adsorb onto soft colloids. Here we study the microstructure and rheology of soft nanocomposites made of surfactants and microgels using linear and nonlinear rheology, SAXS experiments, and cryo-TEM techniques. The results are used to build a dynamical state diagram encompassing various liquid, glassy, jammed, metastable, and reentrant liquid states, which results from a subtle interplay between enthalpic, entropic, and kinetic effects. We rationalize the rheological properties of the nanocomposites in each domain of the state diagram, thus providing exquisite solutions for designing new rheology modifiers at will.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac1282DOI Listing

Publication Analysis

Top Keywords

soft nanocomposites
8
state diagram
8
glassy states
4
states adsorbing
4
adsorbing surfactant-microgel
4
surfactant-microgel soft
4
nanocomposites mixtures
4
mixtures polymer-colloid
4
polymer-colloid hybrids
4
hybrids star
4

Similar Publications

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Ellagic acid-protein nano-complex inhibits tumor growth by reducing the intratumor bacteria and inhibiting histamine production.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:

In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME).

View Article and Find Full Text PDF

Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.

View Article and Find Full Text PDF

Introduction: Tooth extraction initiates a cascade of homeostatic and structural modifications within the periodontal tissues, culminating in alveolar ridge resorption. To prevent ridge resorption following extraction and facilitate successful placement of an implant-supported prosthesis, alveolar ridge preservation was performed.

Methods: In this study, the biocompatibility of a nanocomposite consisting of self-assembling peptide nanofibers (organic phase) and tri-calcium phosphate-nano hydroxyapatite (mineral phase), was evaluated in rabbits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!