The mechanisms of adaptive resistance to genetic-based targeted therapies of solid malignancies have been the subject of intense research. These studies hold great promise for finding co-targetable hub/pathways which in turn would control the downstream non-genetic mechanisms of adaptive resistance. Many such mechanisms have been described in the paradigmatic BRAF-mutated melanoma model of adaptive response to BRAF inhibition. Currently, a major challenge for these mechanistic studies is to confirm in vivo, at the single-cell proteomic level, the existence of dependencies between the co-targeted hub/pathways and their downstream effectors. Moreover, the drug-induced in vivo modulation of these dependencies needs to be demonstrated. Here, we implement such single-cell-based in vivo expression dependency quantification using immunohistochemistry (IHC)-based analyses of sequential biopsies in two xenograft models. These mimic phase 2 and 3 trials in our own therapeutic strategy to prevent the adaptive response to BRAF inhibition. In this mechanistic model, the dependencies between the targeted LiCO-inducible hub HuR and the resistance effectors are more likely time-shifted and transient since the minority of HuR cells, which act as a reservoir of adaptive plasticity, switch to a HuR state as they paradoxically proliferate under BRAF inhibition. Nevertheless, we show that a copula/kernel density estimator (KDE)-based quantification of mutual information (MI) efficiently captures, at the individual level, the dependencies between HuR and two relevant resistance markers pERK and EGFR, and outperforms classic expression correlation coefficients. Ultimately, the validation of MI as a predictive IHC-based metric of response to our therapeutic strategy will be carried in clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267495 | PMC |
http://dx.doi.org/10.1016/j.neo.2021.06.009 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada.
With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Philosophy, Philosophy of Science and the Study of Religion, Ludwig Maximilian University of Munich, München, Germany.
Many visualisations used in the climate communication field aim to present the scientific models of climate change to the public. However, relatively little research has been conducted on how such data are visually processed, particularly from a behavioural science perspective. This study examines trends in visual attention to climate change predictions in world maps using mobile eye-tracking while participants engage with the visualisations.
View Article and Find Full Text PDFTraffic Inj Prev
January 2025
National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Centre, Beijing, China.
Objective: Attention forms the foundation for the formation of situation awareness. Low situation awareness can lead to driving performance decline, which can be dangerous in driving. The goal of this study is to investigate how different types of pre-takeover tasks, involving cognitive, visual and physical resources engagement, as well as individual attentional function, affect driver's attention restoration in conditionally automated driving.
View Article and Find Full Text PDFPLoS One
January 2025
College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, P. R. China.
Color, an intuitive element affecting human senses, can adapt to the environment of a space, evoke emotional responses, trigger and accumulate visual experiences, and enhance the effectiveness of color in shaping spatial atmosphere and reinforcing spatial divisions. In the context of rapid urban underground space development, examining the rational application of color in underground parking spaces is crucial for improving guidance, comfort, and aesthetics. This exploration is essential for achieving high-quality development in urban underground parking environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!