The indole side chain of tryptophan is a versatile π-donor that can participate in various types of cation-π interactions. An understanding of how it may contribute as an auxiliary binding group in mercury(II) complexes can provide valuable insights toward the design of effective chelators for optimal mercury immobilization. In this study, we investigate how the incorporation of two tryptophan residues in model dicysteinyl peptides might participate in peptide-mercury(II) complex stabilization. Two pentapeptides consisting of a Cys-Trp-Cys sequence motif containing a second tryptophan residue at the N-terminal (BT1) or C-terminal (BT2) were designed. An analogous cyclohexapeptide (BT3) was included to evaluate how tryptophan residues, restricted in constrained peptidic turn motifs, might take part in mercury(II) complexation. Their interactions with mercury(II) were investigated by spectroscopic methods and computational modeling. UV-vis studies indicate the formation of 1:1 dithiolated mercury(II) complex, which is corroborated by ESI-MS analysis. Spectroscopic studies reveal that the tryptophan indole group(s) in BT1 and BT3 can participate in mercury(II) cation-π interactions. Optimized 1:1 mercury(II)-BT3 structures indicate that both indole rings are very close to the mercury(II) coordination site and could stabilize it by shielding it from ligand exchange. These findings provide some useful insights toward use of aromatic donor groups as hydrophobic shields in designing more effective metal chelating agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2021.116296DOI Listing

Publication Analysis

Top Keywords

cation-π interactions
8
tryptophan residues
8
mercuryii
7
tryptophan
5
dithiolated peptides
4
peptides incorporating
4
incorporating bistryptophans
4
bistryptophans cooperative
4
cooperative mercuryii
4
mercuryii binding
4

Similar Publications

A series of Dehydroabietylamine (DHAA) C-ring Schiff derivatives, L3-L20, were synthesized and their in vitro cytotoxic activity against the human tumor cell lines cervix HeLa, breast MCF-7, lung A549, liver HepG2, and the nonmalignant cell line umbilical vein HUVEC was investigated. Most of the compounds showed varying degrees of anticancer activity against HeLa cell lines while demonstrating lower toxicity to normal HUVEC cells compared to DHAA and doxorubicin (DOX), especially compound L19, which not only enhanced the anticancer activity of DHAA, but also significantly reduced the toxicity to normal cells, achieving a selectivity index (SI) 118 times higher than that of DHAA and 245 times higher than that of DOX. In addition, compound L19 induced apoptosis in HeLa cells in a dose-dependent manner and arrested the cell cycle in S phase.

View Article and Find Full Text PDF

Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.

View Article and Find Full Text PDF

While autonomic dysregulation and repolarization abnormalities are observed in subarachnoid hemorrhage (SAH), their relationship remains unclear. We aimed to measure skin sympathetic nerve activity (SKNA), a novel method to estimate stellate ganglion nerve activity, and investigate its association with electrocardiogram (ECG) alterations after SAH. We recorded a total of 179 SKNA data from SAH patients at three distinct phases and compared them with 20 data from controls.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!