Affinin is mainly recognized by its antinociceptive effect. Recently, our research group demonstrated that this compound produces vasodilation via activation of the gasotransmitters signaling pathways. However, the molecular targets of affinin were not identified. Considering the structural similarity of this alkamide with anandamide, we hypothesized that affinin-induced vasodilation could involve participation of TRP channels and cannabinoid receptors. In this work, by using the isolated rat aorta assay, we assessed involvement of TRP channels, the cannabinoid system, and the HNO-CGRP-TRPA pathway on the mechanism of action of affinin. Additionally, we measured NO and HS levels elicited by affinin on rat aorta homogenates and carried out computer simulations of molecular interactions between affinin and the TRPA and TRPV channels and the CB receptor. Our results indicated that affinin induces an increase in aortic NO and HS levels. We found evidence that the vasodilator effect induced by affinin involves activation of TRPA and TRPV channels and the CB and eCB receptors. In silico analyses showed that affinin is able to bind with high affinity to these molecular targets. Moreover, we also proved that affinin-induced vasodilation is partly mediated via activation of the HNO-TRPA-CGRP pathway. Based on these results we propose a novel mechanism of action to explain the vasodilatory effect of affinin, which could be developed as an alternative drug to treat cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2021.104985 | DOI Listing |
Cont Lens Anterior Eye
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Baoshan Campus of Huashan Hospital, Fudan University, Shanghai, China. Electronic address:
Purpose: To investigate the efficacy and safety of transient receptor potential (TRP) channel modulators for dry eye.
Methods: A thorough search for randomized clinical trials was conducted in seven databases up to February 16, 2024. Suitable studies were identified according to inclusion and exclusion criteria, extracted data were synthesized and analyzed using Review Manager 5.
SLAS Discov
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:
Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.
View Article and Find Full Text PDFTheranostics
January 2025
The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.
Heat sensation is mediated by specialized heat-sensitive neurons in the somatosensory system that innervates the skin. Previous studies revealed that noxious heat sensation is controlled by the sodium (Na)-activated potassium (K) channel Slick (Kcnt2), which is highly expressed in nociceptive Aδ-fibers. However, the mechanism by which Slick modulates heat sensation is poorly understood.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan, 8430070, China.
This study aimed to investigate the protective effect of a novel capsaicinoid glucoside (CG) against HO-induced oxidative stress in HepG2 cells and elucidate its underlying molecular mechanism. CG treatment significantly reduced HO-induced cell mortality and attenuated the production of lactate dehydrogenase and malondialdehyde in a dose-dependent manner. Moreover, CG drastically reduced the ROS levels 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!