We have shown previously that a single radiation event (0.063, 0.125 or 0.5 Gy, 0.063 Gy/min) in adult mice (age 10 weeks) can have delayed dose-dependent effects on locomotor behavior 18 months postirradiation. The highest dose (0.5 Gy) reduced, whereas the lowest dose (0.063 Gy) increased locomotor activity at older age independent of sex or genotype. In the current study we investigated whether higher doses administered at a higher dose rate (0.5, 1 or 2 Gy, 0.3 Gy/min) at the same age (10 weeks) cause stronger or earlier effects on a range of behaviors, including locomotion, anxiety, sensorimotor and cognitive behavior. There were clear dose-dependent effects on spontaneous locomotor and exploratory activity, anxiety-related behavior, body weight and affiliative social behavior independent of sex or genotype of wild-type and Ercc2S737P heterozygous mice on a mixed C57BL/6JG and C3HeB/FeJ background. In addition, smaller genotype- and dose-dependent radiation effects on working memory were evident in males, but not in females. The strongest dose-dependent radiation effects were present 4 months postirradiation, but only effects on affiliative social behaviors persisted until 12 months postirradiation. The observed radiation-induced behavioral changes were not related to alterations in the eye lens, as 4 months postirradiation anterior and posterior parts of the lens were still normal. Overall, we did not find any sensitizing effect of the mutation towards radiation effects in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-20-00281.1DOI Listing

Publication Analysis

Top Keywords

months postirradiation
16
radiation effects
12
effects
8
age weeks
8
dose-dependent effects
8
independent sex
8
sex genotype
8
affiliative social
8
dose-dependent radiation
8
radiation
5

Similar Publications

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Objective: Post-irradiation sinonasal mucosa disease (SMD) is observed in patients with nasopharyngeal carcinoma (NPC) treated with radiotherapy (RT), leading to a detrimental impact on quality of life. This study aimed to assess the incidence, severity, and regression of the post-irradiation SMD among patients with NPC treated with proton therapy.

Methods: NPC patients treated with proton therapy were retrospectively enrolled.

View Article and Find Full Text PDF

Angiosarcoma (AS) is a malignant vascular neoplasm comprising neoplastic endothelial cells accounting for 1%-4% of soft tissue sarcomas. While lymphedema-associated and post-irradiation ASs are almost always driven by a high-level amplification of MYC (8q24), sporadic ASs, including those of breast parenchymal origin, typically lack MYC amplification. Here, we report a case of sporadic breast MYC-amplified AS in a 19-year-old female with no history of lymphedema or irradiation, who was referred to our hospital for an enlarging right breast mass.

View Article and Find Full Text PDF

Background And Purpose: Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions.

Materials And Methods: We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters.

View Article and Find Full Text PDF

Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!