Echinococcosis is a serious zoonotic parasitic disease transmitted from canines to humans and livestock. Periodic deworming is recommended by the WHO/OIE as a highly effective measure against echinococcosis. However, manual deworming involves significant challenges, particularly in remote areas with scarce resources. The insufficient awareness delivering praziquantel (PZQ) baits for dogs leads to low compliance rate. The aim of this study was therefore to develop a novel smart collar for dogs to address these challenges. We developed a smart Internet of Things (IoT)-based deworming collar which can deliver PZQ baits for dogs automatically, regularly, quantitatively with predominant characteristics of being waterproof, anti-collision, cold-proof and long life battery. Its performance was tested in two remote locations on the Tibetan Plateau. A cross-sectional survey was conducted to evaluate the compliance of the dog owners. Further, a randomized controlled study was performed to evaluate the difference between smart-collar deworming and manual deworming. The collar's effectiveness was further assessed on the basis of Generalized Estimation Equations (GEE). The testing and evaluation was done for 10 smart deworming collars in factory laboratory, 18 collars attached for 18 dogs in Seni district, Tibet Autonomous Region, China, and 523 collars attached for 523 dogs in Hezuo city, Gansu province, China. The anti-collision, waterproof, and coldproof proportion of the smart collars were 100.0%, 99.5%, and 100.0%, respectively. When compared to manual deworming, the dogs' risk of infection with Echinococcus on smart-collar deworming is down to 0.182 times (95% CI: 0.049, 0.684) in Seni district and 0.355 (95%CI: 0.178, 0.706) in Hezuo city, the smart collar has a significant protective effect. The owners' overall compliance rate to attach the smart collars for their dogs was 89%. The smart deworming collar could effectively reduce the dogs' risk of infection with Echinococcus in dogs, significantly increase the deworming frequency and coverage and rapidly remove worm biomass in dogs. Thus, it may be a promising alternative to manual deworming, particularly in remote areas on the Tibetan Plateau.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266112PMC
http://dx.doi.org/10.1371/journal.pntd.0009443DOI Listing

Publication Analysis

Top Keywords

manual deworming
16
smart deworming
12
deworming collar
12
deworming
11
dogs
9
smart
8
remote areas
8
pzq baits
8
baits dogs
8
compliance rate
8

Similar Publications

Background: Manual screening of a Kato-Katz (KK) thick stool smear remains the current standard to monitor the impact of large-scale deworming programs against soil-transmitted helminths (STHs). To improve this diagnostic standard, we recently designed an artificial intelligence based digital pathology system (AI-DP) for digital image capture and analysis of KK thick smears. Preliminary results of its diagnostic performance are encouraging, and a comprehensive evaluation of this technology as a cost-efficient end-to-end diagnostic to inform STH control programs against the target product profiles (TPP) of the World Health Organisation (WHO) is the next step for validation.

View Article and Find Full Text PDF

Existing manual deworming programs launched have made great progress in reducing the infection rate of domestic dogs, but significant challenges remain in scattered nomadic communities inhabiting the Tibetan Plateau. The low deworming frequency and low levels of coverage were responsible for the high infection rate of spp. among dogs.

View Article and Find Full Text PDF

Smart deworming collar: A novel tool for reducing Echinococcus infection in dogs.

PLoS Negl Trop Dis

July 2021

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases; WHO Collaborating Centre for Tropical Diseases, Shanghai, China.

Echinococcosis is a serious zoonotic parasitic disease transmitted from canines to humans and livestock. Periodic deworming is recommended by the WHO/OIE as a highly effective measure against echinococcosis. However, manual deworming involves significant challenges, particularly in remote areas with scarce resources.

View Article and Find Full Text PDF

Background: As a neglected cross-species parasitic disease transmitted between canines and livestock, echinococcosis remains a global public health concern with a heavy disease burden. In China, especially in the epidemic pastoral communities on the Qinghai-Tibet Plateau, the harsh climate, low socio-economic status, poor overall hygiene, and remote and insufficient access to all owned dogs exacerbate the difficulty in implementing the ambitious control programme for echinococcosis. We aimed to design and implement a remote management system (RMS) based on internet of things (IoT) for control and surveillance of echinococcosis by combining deworming devices to realise long-distance smart deworming control, smooth statistical analysis and result display.

View Article and Find Full Text PDF

Background: Ascariasis is the leading helminthic infection worldwide, with its peak prevalence noted in children aged 2-10 years. Although mainly asymptomatic, chronic and heavy infestation could lead to severe complications such as malnutrition, poor physical and cognitive development, as well as intestinal obstruction. We report the case of a 4-year-old boy with intestinal obstruction due to Ascaris lumbricoides infestation and discuss its public health significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!