A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mathematical Modeling, In-Human Evaluation and Analysis of Volume Kinetics and Kidney Function After Burn Injury and Resuscitation. | LitMetric

Objective: Existing burn resuscitation protocols exhibit a large variability in treatment efficacy. Hence, they must be further optimized based on comprehensive knowledge of burn pathophysiology. A physics-based mathematical model that can replicate physiological responses in diverse burn patients can serve as an attractive basis to perform non-clinical testing of burn resuscitation protocols and to expand knowledge on burn pathophysiology. We intend to develop, optimize, validate, and analyze a mathematical model to replicate physiological responses in burn patients.

Methods: Using clinical datasets collected from 233 burn patients receiving burn resuscitation, we developed and validated a mathematical model applicable to computer-aided in-human burn resuscitation trial and knowledge expansion. Using the validated mathematical model, we examined possible physiological mechanisms responsible for the cohort-dependent differences in burn pathophysiology between younger versus older patients, female versus male patients, and patients with versus without inhalational injury.

Results: We demonstrated that the mathematical model can replicate physiological responses in burn patients associated with wide demographic characteristics and injury severity, and that an increased inflammatory response to injury may be a key contributing factor in increasing the mortality risk of older patients and patients with inhalation injury via an increase in the fluid retention.

Conclusion: We developed and validated a physiologically plausible mathematical model of volume kinetic and kidney function after burn injury and resuscitation suited to in-human application.

Significance: The mathematical model may provide an attractive platform to conduct non-clinical testing of burn resuscitation protocols and test new hypotheses on burn pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2021.3094515DOI Listing

Publication Analysis

Top Keywords

mathematical model
28
burn resuscitation
20
burn pathophysiology
16
burn
15
resuscitation protocols
12
model replicate
12
replicate physiological
12
physiological responses
12
burn patients
12
mathematical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!