This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1613-0_2DOI Listing

Publication Analysis

Top Keywords

rice blast
8
magnaporthe oryzae
8
leaf cuticle
8
re-polarization appressorium
8
rice
5
plant
5
biology invasive
4
invasive growth
4
growth rice
4
blast fungus
4

Similar Publications

Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.

View Article and Find Full Text PDF

Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops like rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as , the causative agent of rice blast disease, , responsible for head blight (FHB) in wheat, and , the source of Septoria tritici blotch (STB).

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.

View Article and Find Full Text PDF

Unlabelled: Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration.

Background/objectives: Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!