Purpose: To compare predictive efficiency of multiple classifiers modeling and establish a combined magnetic resonance imaging (MRI) radiomics model for identifying lymph node (LN) metastases of papillary thyroid cancer (PTC) preoperatively.
Materials And Methods: A retrospective analysis based on the preoperative MRI scans of 109 PTC patients including 77 patients with LN metastases and 32 patients without metastases was conducted, and we divided enroll cases into trained group and validation group. Radiomics signatures were selected from fat-suppressed T2-weighted MRI images, and the optimal characteristics were confirmed by spearman correlation test, hypothesis testing and random forest methods, and then, eight predictive models were constructed by eight classifiers. The receiver operating characteristic (ROC) curves analysis were performed to demonstrate the effectiveness of the models.
Results: The area under the curve (AUC) of ROC based on MRI texture diagnosed LN status by naked eye was 0.739 (sensitivity = 0.571, specificity = 0.906). Based on the 5 optimal signatures, the best AUC of MRI radiomics model by logistics regression classifier had a considerable prediction performance with AUCs 0.805 in trained group and 0.760 in validation group, respectively, and a combination of best radiomics model with visual diagnosis of MRI texture had a high AUC as 0.969 (sensitivity = 0.938, specificity = 1.000), suggesting combined model had a preferable diagnostic efficiency in evaluating LN metastases of PTC.
Conclusion: Our combined radiomics model with visual diagnosis could be a potentially effective strategy to preoperatively predict LN metastases in PTC patients before clinical intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-021-01393-1 | DOI Listing |
Rheumatol Int
January 2025
Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Background: The combination of immune checkpoint inhibitors (ICIs) and radiotherapy (RT) may increase the risk of radiation esophagitis (RE). This study aimed to establish and validate a new nomogram to predict RE in patients with non-small cell lung cancer (NSCLC) undergoing immunochemotherapy followed by RT (ICI-RT).
Methods: The 102 eligible patients with NSCLC treated with ICI-RT were divided into training (n = 71) and validation (n = 31) cohorts.
Front Oncol
December 2024
Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Objective: This study aims to develop and validate an enhanced computed tomography (CT)-based radiomics model to differentiate gastric schwannomas (GS) from gastrointestinal stromal tumors (GIST) across various risk categories.
Methods: This retrospective analysis was conducted on 26 GS and 82 GIST cases, all confirmed by postoperative pathology. Data was divided into training and validation cohorts at a 7:3 ratio.
Front Oncol
December 2024
Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.
Objective: This study aimed to develop a nomogram that combines intratumoral and peritumoral radiomics based on multi-parametric MRI for predicting the postoperative pathological upgrade of high-risk breast lesions and sparing unnecessary surgeries.
Methods: In this retrospective study, 138 patients with high-risk breast lesions (January 1, 2019, to January 1, 2023) were randomly divided into a training set (n=96) and a validation set (n=42) at a 7:3 ratio. The best-performing MRI sequence for intratumoral radiomics was selected to develop individual and combined radiomics scores (Rad-Scores).
Acad Radiol
December 2024
Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (D.A.T.). Electronic address:
Rationale And Objectives: Prostate cancer (PCa) is the second most common cancer among men and a leading cause of cancer-related mortalities. Radiomics has shown promising performances in the classification of PCa grade group (GG) in several studies. Here, we aimed to systematically review and meta-analyze the performance of radiomics in predicting GG in PCa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!