AI Article Synopsis

  • Severe SARS-CoV-2 infection leads to abnormal blood clotting due to the disruption of the coagulation system, with an unclear viral mechanism involved.
  • The viral protein ORF3a is thought to increase calcium levels in infected cells, promoting externalization of phosphatidylserine (PS), which is crucial for activating coagulation factors.
  • Experiments demonstrated that ORF3a expression significantly boosts procoagulant activity and PS exposure without causing cell death, indicating a potential link between the virus and increased thrombosis risk.

Article Abstract

Unlabelled: Severe SARS-CoV-2 infection is complicated by dysregulation of the blood coagulation system and high rates of thrombosis, but virus-intrinsic mechanisms underlying this phenomenon are poorly understood. Increased intracellular calcium concentrations promote externalization of phosphatidylserine (PS), the membrane anionic phospholipid required for assembly and activation of the tenase and prothrombinase complexes to drive blood coagulation. TMEM16F is a ubiquitous phospholipid scramblase that mediates externalization of PS in a calcium-dependent manner. As SARS-CoV-2 ORF3a encodes a presumed cation channel with the ability to transport calcium, we hypothesized that ORF3a expression by infected host cells perturbs the cellular calcium rheostat, driving TMEM16F-dependent externalization of PS and enhancing procoagulant activity. Using a doxycycline-inducible system, synchronized expression of ORF3a in A549 pulmonary epithelial cells resulted in a time-dependent augmentation of tissue factor (TF) procoagulant activity exceeding 9-fold by 48 hours (p < 0.0001), with no change in TF cell-surface expression. This enhancement was dependent upon PS as determined by inhibition with the PS-binding protein lactadherin. Over 2-fold enhancement of prothrombinase activity (p < 0.0001) was also observed by 48 hours. ORF3a increased intracellular calcium levels by 18-fold at 48 hours (p < 0.0001), as determined by the intracellular calcium indicator fluo-4. After 16 hours of ORF3a expression, more than 60% of cells had externalized PS (p < 0.001) without increased cell death, as quantified by flow cytometry following annexin V binding. Immunofluorescence microscopy staining for ORF3a, annexin V, and nuclei confirmed ORF3a expression within internal and cell surface membranes and increased PS externalization. PS externalization was insensitive to the pan-caspase inhibitor z-VAD-FMK, and there was no evidence of apoptotic activation as determined by caspase-3 cleavage. By contrast, ORF3a expression did not augment coagulation in cells deficient in the calcium-dependent phospholipid scramblase TMEM16F. Similarly, ORF3a-enhanced TF procoagulant activity (p < 0.01) and prothrombinase activity (p<0.05) was completely abrogated using TMEM16 inhibitors, including the uricosuric agent benzbromarone that has been registered for human use in over 20 countries. Live SARS-CoV-2 infection of A549-ACE2 cells increased cell surface factor Xa generation at MOI 0.1 (p < 0.01) but not MOI 0.01 or following heat inactivation of the virus, and RNA sequencing confirmed induction without increased expression. RNA sequencing of human SARS-CoV-2 infected lung autopsy and control tissue (n= 53) confirmed these findings Immunofluorescence staining for ORF3a and KRT8/18 and CD31 in SARS-CoV-2 infected human lung autopsy specimens demonstrated ORF3a expression in pulmonary epithelium and endothelial cells, highlighting the potential pathologic relevance of this mechanism. Here we demonstrate that expression of the SARS-CoV-2 accessory protein ORF3a increases the intracellular calcium concentration and TMEM16F-dependent PS scrambling to augment procoagulant activity of the tenase and prothrombinase complexes. Our studies of human cells and tissues infected with SARS-CoV-2 support the pathologic relevance of this mechanism. We highlight the therapeutic potential to target the ORF3a-TMEM16F axis as with benzbromarone to mitigate dysregulation of coagulation and thrombosis during severe SARS-CoV-2 infection.

Disclosures:   Membership on an entity's Board of Directors or advisory committees; Consultancy, Speakers Bureau.   Consultancy, Research Funding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701469PMC
http://dx.doi.org/10.1182/blood.2021011459DOI Listing

Publication Analysis

Top Keywords

orf3a expression
16
intracellular calcium
12
procoagulant activity
12
blood coagulation
8
increased intracellular
8
phospholipid scramblase
8
orf3a
8
hours 00001
8
prothrombinase activity
8
hours orf3a
8

Similar Publications

Manipulation of Host Cholesterol by SARS-CoV-2.

bioRxiv

November 2024

Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.

SARS-CoV-2 infection is associated with alterations in host lipid metabolism, including disruptions in cholesterol homeostasis. However, the specific mechanisms by which viral proteins influence cholesterol remain incompletely understood. Here, we report that SARS-CoV-2 infection induces cholesterol sequestration within lysosomes, with the viral protein ORF3a identified as the primary driver of this effect.

View Article and Find Full Text PDF

MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients.

Clin Rev Allergy Immunol

December 2024

Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.

Article Synopsis
  • * SARS-CoV-2 can inhibit this defense mechanism by producing specific proteins that interfere with MDA5's function and induce the production of antibodies against it.
  • * Genetic studies have identified variants in the ifih1 gene that are linked to COVID-19 risk, indicating that targeting MDA5 and its pathway could offer new treatment options for the disease.
View Article and Find Full Text PDF

The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model.

View Article and Find Full Text PDF

Excessive alarmins S100A8/A9 escalate the inflammation and even exacerbate immune-driven thrombosis and multi-organ damage. However, the regulatory mechanisms of S100A8/A9 expression in infectious diseases remain unclear. In this study, high-dimensional transcriptomic data analyses revealed a high proportion of CD14FCN1 macrophages within the pulmonary niche post-severe SARS-CoV-2 infection.

View Article and Find Full Text PDF

SARS-CoV-2 infection poses a significant risk to placental physiology, but its impact on placental homeostasis is not well understood. We and others have previously shown that SARS-CoV-2 can colonize maternal and fetal placental cells, yet the specific mechanisms remain unclear. In this study, we investigate ORF3a, a key accessory protein of SARS-CoV-2 that exhibits continuous mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!