Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here we describe the design, synthesis, and biological evaluation of cell-penetrating, amphipathic cyclic peptoids as a novel class of molecular transporters. We demonstrated that macrocyclization, along with the introduction of hydrophobic residues, greatly enhanced cellular uptake of polyguanidine linear peptoids. The amphipathic cyclic peptoids showed an order of magnitude more efficient intracellular delivery ability, compared to a commonly used polyarginine cell-penetrating peptide, representing one of the best molecular transporters reported to date. Given the excellent cell-permeability, proteolytic stability, and ease of synthesis, the amphipathic cyclic peptoids would be broadly applicable to a wide range of clinical and biological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc02848k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!