Carrier generation dynamics in binary PTB7-Th:CO8DFIC (1:1.5) and ternary PTB7-Th:CO8DFIC:PCBM (1:1.05:0.45) composites were investigated to identify the origins of high power conversion efficiencies (PCEs) in ternary bulk-heterojunction (BHJ) organic solar cells. Steady-state photoluminescence and time-resolved photoinduced absorption spectroscopic analyses revealed that the ternary composite exhibited faster hole transfer from CO8DFIC to PTB7-Th (8 ps compared to 21 ps in the binary composite), which led to an improved exciton separation yield in CO8DFIC (94% compared to 68% in the binary composite). Improved intermixing of the component materials and efficient electron transfer from CO8DFIC to PCBM facilitated enhancement in the hole transfer rate. The CO8DFIC-to-PCBM electron transfer promoted an electron transport cascade over PTB7-Th, CO8DFIC, and PCBM, which efficiently deactivated back-electron transfer (carrier recombination loss) from CO8DFIC to PTB7-Th at ∼160 ps and assisted in improving the PCE of the ternary BHJ cell (13.4% compared to 10.5% in the binary BHJ cell).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01496DOI Listing

Publication Analysis

Top Keywords

ternary bulk-heterojunction
8
organic solar
8
solar cells
8
hole transfer
8
transfer co8dfic
8
co8dfic ptb7-th
8
binary composite
8
electron transfer
8
co8dfic pcbm
8
bhj cell
8

Similar Publications

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

Revealing Intrinsic Free Charge Generation: Promoting the Construction of Over 19% Efficient Planar p-n Heterojunction Organic Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.

View Article and Find Full Text PDF

New Polymeric Acceptors Based on Benzo[1,2-b:4,5-b'] Difuran Moiety for Efficient All-Polymer Solar Cells.

Macromol Rapid Commun

December 2024

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

In order to realize high-performance bulk-heterojunction (BHJ) all-polymer solar cells, achieving appropriate aggregation and moderate miscibility of the polymer blends is one critical factor. Herein, this study designs and synthesizes two new polymer acceptors (Ps), namely PYF and PYF-Cl, containing benzo[1,2-b:4,5-b'] difuran (BDF) moiety with/without chlorine atoms on the thiophene side groups. Thanks to the preferred planar structure and high electronegativity of the BDF units, the resultant Ps generate strong intermolecular interactions and π-π stacking in both the neat and blend films.

View Article and Find Full Text PDF

The ternary blending strategy is a fundamental approach that is widely recognized in the field of organic optoelectronics. In our investigation, leveraging the inherent advantages of the ternary component blending methodology, we introduced an innovative design for organic photodetectors (OPDs) aimed at reducing the dark current density (J) under reverse bias. This pioneering effort involved combining two distinct conjugated molecules (IT-4F and IEICO-4F) with a conjugated polymer (PM7), resulting in a composite material characterized by a well-defined vertical phase separation.

View Article and Find Full Text PDF

Here in, we have designed two new unfused non-fullerene small molecules using asymmetric benzo[1,2-b:3.4-b', 6,5-b"]trithiophene (BTT) as the central donor core and different terminal units i. e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!