In this work, nanovoid-enhanced thin-film composite (TFC) membranes have been successfully fabricated using ZIF-67 nanoparticles as the sacrificial template. By incorporating different amounts of ZIF-67 during interfacial polymerization, the resultant TFC membranes can have different degrees of nanovoids after self-degradation of ZIF-67 in water, consequently influencing their physiochemical properties and separation performance. Nanovoid structures endow the membranes with additional passages for water molecules. Thus, all the newly developed TFC membranes exhibit better separation performance for brackish water reverse osmosis (BWRO) desalination than the pristine TFC membrane. The membrane made from 0.1 wt % ZIF-67 shows a water permeance of 2.94 LMH bar and a salt rejection of 99.28% when being tested under BWRO at 20 bar. This water permeance is 53% higher than that of the pristine TFC membrane with the salt rejection well maintained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07673DOI Listing

Publication Analysis

Top Keywords

tfc membranes
12
nanovoid-enhanced thin-film
8
thin-film composite
8
reverse osmosis
8
zif-67 nanoparticles
8
nanoparticles sacrificial
8
sacrificial template
8
zif-67 water
8
separation performance
8
pristine tfc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!