A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. | LitMetric

We previously found that DNA methyltransferase 3a (DNMT3a) plays an important role in regulating embryonic cardiomyocyte gene expression, morphology, and function. In this study, we investigated the role of the most abundant DNMT in mammalian cells, DNMT1, in these processes. It is known that DNMT1 is essential for embryonic development, during which it is involved in regulating cardiomyocyte DNA methylation and gene expression. We used siRNA to knock down DNMT1 expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining and multielectrode array were, respectively, utilized to evaluate cardiomyocyte growth and electrophysiology. RNA sequencing (RNA-Seq) and multiplex bisulfite sequencing were, respectively, performed to examine gene expression and promoter methylation. At 72 h post-transfection, reduction of DNMT1 expression decreased the number and increased the size of embryonic cardiomyocytes. Beat frequency and the amplitude of field action potentials were decreased by DNMT1 siRNA. RNA-Seq analysis identified 801 up-regulated genes and 494 down-regulated genes in the DNMT1 knockdown cells when compared to controls. Pathway analysis of the differentially expressed genes revealed pathways that were associated with cell death and survival, cell morphology, cardiac function, and cardiac disease. Alternative splicing analysis identified 929 differentially expressed exons, including 583 up-regulated exons and 308 down-regulated exons. Moreover, decreased methylation levels were found in the promoters of cardiac genes Myh6, Myh7, Myh7b, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb, mef2c, mef2d, Camta2, Cdkn1A, and Cdkn1C. Of these 13 genes, 6 (Myh6, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb) and 1 (Cdkn1C) had increased or decreased gene expression, respectively. Altogether, these data show that DNMT1 is important in embryonic cardiomyocytes by regulating DNA methylation, gene expression, gene splicing, and cell function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329956PMC
http://dx.doi.org/10.1002/2211-5463.13252DOI Listing

Publication Analysis

Top Keywords

gene expression
20
embryonic cardiomyocytes
16
dna methylation
12
dna methyltransferase
8
expression
8
cardiac genes
8
methylation gene
8
dnmt1 expression
8
analysis identified
8
differentially expressed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!