For a recirculating aquaculture system (RAS), a passive water treatment system was designed for efficient discharge nutrient removal and water reuse in RAS production. Denitrification in a woodchip bioreactor filled with birch wood (Betula pendula) followed by sand filtration was introduced into a side-loop of an experimental RAS rearing rainbow trout (Oncorhynchus mykiss). Denitrification efficiency remained high (96%) throughout the experiment and reached a nitrogen removal rate of 15 g NO-N m per day. Sand filtration was used to remove dissolved and particulate matter and improve water quality before being returned to water circulation. To ensure the absence of harmful substances in the system, heavy metals were quantified. Additionally, off-flavor-inducing compounds were quantified in the circulating water and in fish flesh. Significantly higher concentrations of geosmin (GSM) (p<0.05) were observed in the controls compared to side-looped systems, but a similar effect was not observed in the case of 2-methylisoborneol (MIB). Among heavy metals, concentrations of Co (30 μg L), Ni (40 μg L), and Pb (140 μg L) decreased to below 10 μg L in the side-loop water after the start-up of the system. Only low concentrations of Cu (5-30 μg L) were found in the rearing tank water, in both the side-loop and controls. The results indicated that this type of process design is suitable for safely producing fish of high quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636402PMC
http://dx.doi.org/10.1007/s11356-021-15162-0DOI Listing

Publication Analysis

Top Keywords

sand filtration
12
water treatment
8
recirculating aquaculture
8
aquaculture system
8
water
5
efficient water
4
treatment achieved
4
achieved recirculating
4
system
4
system woodchip
4

Similar Publications

Mechanistic study of micropollutants rejection by nanofiltration of a natural water.

Environ Technol

December 2024

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.

A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants.

View Article and Find Full Text PDF

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Decanted oily wastewater is the generated stream associated with vessel-based skimming operations during offshore oil spill response. It contains a large amount of persistent, bio-accumulative, carcinogenic, and mutagenic oil contaminants, so it is critical to find effective ways to treat it. This study targets the decanted oily wastewater treatment by developing an integrated sand and activated carbon-based filtration approach.

View Article and Find Full Text PDF

Mycorrhizal fungi mitigate cadmium leaching losses by decreasing the inorganic cadmium proportion in soil solutions.

Ecotoxicol Environ Saf

December 2024

College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China. Electronic address:

Arbuscular mycorrhizal fungi (AMF) are common in cadmium (Cd)-contaminated soil. However, the effects of AMF on Cd migration in contaminated soil are still poorly understood. A pot experiment involving a control without AMF inoculation (CK), inoculation with AMF (AMF), and bacterial filtrate of the AMF inoculant (LY) was conducted in the present study.

View Article and Find Full Text PDF

Quartz sand proppant is widely used in hydraulic fracturing and the extraction of low-permeability reservoirs to prevent fracture closure and enhance reservoir recovery effectively. The influence of proppant size and type on well productivity has been widely studied, but the mechanism of proppant surface wettability on the hydraulic fracture inflow performance has not been thoroughly investigated. To further understand the influence of proppant wettability on fracture inflow performance, in this work, a hydrophobic quartz sand proppant was prepared by a simple dip-coating method using silane solution with a static water contact angle of 136.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!