N-acylethanolamines (NAEs) are endogenous bioactive lipids reported to exert anti-inflammatory and neuroprotective effects mediated by cannabinoid receptors and peroxisome proliferator-activated receptors (PPARs), among others. Therefore, interfering with NAE signaling could be a promising strategy to decrease inflammation in neurological disorders such as multiple sclerosis (MS). Fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA) are key modulators of NAE levels. This study aims to investigate and compare the effect of NAAA inhibition, FAAH inhibition, and dual inhibition of both enzymes in a mouse model of MS, namely the experimental autoimmune encephalomyelitis (EAE). Our data show that NAAA inhibition strongly decreased the hallmarks of the pathology. Interestingly, FAAH inhibition was less efficient in decreasing inflammatory hallmarks despite the increased NAE levels. Moreover, the inhibition of both NAAA and FAAH, using a dual-inhibitor or the co-administration of NAAA and FAAH inhibitors, did not show an added value compared to NAAA inhibition. Furthermore, our data suggest an important role of decreased activation of astrocytes and microglia in the effects of NAAA inhibition on EAE, while NAAA inhibition did not affect T cell recall. This work highlights the beneficial effects of NAAA inhibition in the context of central nervous system inflammation and suggests that the simultaneous inhibition of NAAA and FAAH has no additional beneficial effect in EAE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609003PMC
http://dx.doi.org/10.1007/s13311-021-01074-xDOI Listing

Publication Analysis

Top Keywords

naaa inhibition
24
inhibition
13
naaa faah
12
naaa
10
n-acylethanolamine-hydrolyzing acid
8
acid amidase
8
fatty acid
8
acid amide
8
amide hydrolase
8
experimental autoimmune
8

Similar Publications

Background And Aims: Intestinal fibrosis, a frequent complication of inflammatory bowel disease, is characterized by stricture formation with no pharmacological treatment to date. N-acylethanolamine acid amidase (NAAA) is responsible of acylethanolamides (AEs, e.g.

View Article and Find Full Text PDF

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), -acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies.

View Article and Find Full Text PDF

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3β (GSK-3β). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS.

View Article and Find Full Text PDF

Genome Mining of a Fungal Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Megasynthetase Pathway to Synthesize a Phytotoxic -Acyl Amino Acid.

Org Lett

May 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Guided by the retrobiosynthesis hypothesis, we characterized a fungal polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid megasynthetase pathway to generate 2--4--2-methylsorbyl-d-leucine (), a polyketide amino acid conjugate that inhibits root growth. The biosynthesis of includes a PKS-NRPS enzyme to assemble an -acyl amino alcohol intermediate, which is further oxidized to an -acyl amino acid (NAAA), demonstrating a new biosynthetic logic for synthesizing NAAAs and expanding the chemical space of products encoded by fungal PKS-NRPS clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!