A galactose-targeting supramolecular photosensitizer system DOX@GP5⊃NBSPD was constructed based on a host-guest inclusion complex. The supramolecular system could achieve efficient delivery of DOX/NBS and selective release under GSH stimulation. In vitro studies revealed that this supramolecular DOX/NBS co-delivery system exhibited high ROS production and excellent cancer cell damage capability in a hypoxic environment. This strategy can therefore achieve enhanced hypoxic-tumor therapeutic effectiveness by chemo-photodynamic combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc02959b | DOI Listing |
Adv Healthc Mater
January 2025
College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China.
The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama.
Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Materials Science and Engineering, 1088 Xueyuan Blvd., Nanshan District, 518055, Shenzhen, CHINA.
Open-shell radical materials, which are characterized by unpaired electrons, have led to revolutionary breakthroughs in material science due to their unique optoelectronic properties. However, the involvement of organic radicals in photodynamic therapy (PDT) has rarely been reported or discussed. This work studies two photosensitizer analogs.
View Article and Find Full Text PDFInt J Oral Sci
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China.
Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!