Introduction: In addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation.

Materials: Sox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays.

Results: Early Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown.

Conclusion: Here, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256280PMC
http://dx.doi.org/10.3389/fcell.2021.686096DOI Listing

Publication Analysis

Top Keywords

chondrogenic differentiation
24
sox9
13
translational capacity
12
sox9 early
12
sox9 knockdown
12
early chondrogenic
8
differentiation
8
atdc5 cells
8
expression ribosome
8
ribosome biogenesis
8

Similar Publications

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!