Thoracic cancers pose a significant global health burden. Immune checkpoint blockade therapies have improved treatment outcomes, but durable responses remain limited. Understanding how the host immune system interacts with a developing tumor is essential for the rational development of improved treatments for thoracic malignancies. Recent technical advances have improved our understanding of the mutational burden of cancer cells and changes in cancer-specific gene expression, providing a detailed understanding of the complex biology underpinning tumor-host interactions. While there has been much focus on the genetic alterations associated with cancer cells and how they may impact treatment outcomes, how host genetics affects cancer development is also critical and will greatly determine treatment response. Genome-wide association studies (GWAS) have identified genetic variants associated with cancer predisposition. This approach has successfully identified host genetic risk factors associated with common thoracic cancers like lung cancer, but is less effective for rare cancers like malignant mesothelioma. To assess how host genetics impacts rare thoracic cancers, we used the Collaborative Cross (CC); a powerful murine genetic resource designed to maximize genetic diversity and rapidly identify genes associated with any biological trait. We are using the CC in conjunction with our asbestos-induced MexTAg mouse model, to identify host genes associated with mesothelioma development. Once genes that moderate tumor development and progression are known, human homologues can be identified and human datasets interrogated to validate their association with disease outcome. Furthermore, our CC-MexTAg animal model enables in-depth study of the tumor microenvironment, allowing the correlation of immune cell infiltration and gene expression signatures with disease development. This strategy provides a detailed picture of the underlying biological pathways associated with mesothelioma susceptibility and progression; knowledge that is crucial for the rational development of new diagnostic and therapeutic strategies. Here we discuss the influence of host genetics on developing an effective immune response to thoracic cancers. We highlight current knowledge gaps, and with a focus on mesothelioma, describe the development and application of the CC-MexTAg to overcome limitations and illustrate how the knowledge gained from this unique study will inform the rational design of future treatments of mesothelioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256168PMC
http://dx.doi.org/10.3389/fonc.2021.679609DOI Listing

Publication Analysis

Top Keywords

thoracic cancers
20
host genetics
16
influence host
8
genetics developing
8
developing effective
8
effective immune
8
immune response
8
response thoracic
8
treatment outcomes
8
rational development
8

Similar Publications

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Background: Transforming growth factor-β (TGF-β) superfamily plays an important role in tumor progression and metastasis. Activin A receptor type 1C (ACVR1C) is a TGF-β type I receptor that is involved in tumorigenesis through binding to different ligands.

Aim: To evaluate the correlation between single nucleotide polymorphisms (SNPs) of ACVR1C and susceptibility to esophageal squamous cell carcinoma (ESCC) in Chinese Han population.

View Article and Find Full Text PDF

Background: The Hispanic/Latino population is not uniform. Prevalence and clinical outcomes of cardiac arrhythmias in ethnic background subgroups are variable, but the reasons for differences are unclear. Vectorcardiographic Global Electrical Heterogeneity (GEH) has been shown to be associated with adverse cardiovascular outcomes.

View Article and Find Full Text PDF

Introduction: Management of pain associated with breast cancer surgeries is crucial in reducing incidence of postmastectomy pain syndrome. The pain distribution involves the anterior chest wall, axillary area and ipsilateral upper limb.

Objective: This study was designed to investigate the effect of bilevel erector spinae plane block (ESPB) with high thoracic block vs the conventional unilevel ESPB vs opioids in patients with cancer undergoing modified radical mastectomy regarding pain control and reducing pain in axilla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!