Background: The incidence of cancer worldwide is expected to be more than 22 million annually by 2030. Approximately half of these patients will likely require radiation therapy. Although radiotherapy has been shown to improve disease control and increase survivorship, it also results in damage to adjacent healthy tissues, including the bone, which can lead to devastating skeletal complications, such as nonunion, pathologic fractures, and osteoradionecrosis. Pathologic fractures and osteoradionecrosis are ominous complications that can result in large bone and soft tissue defects requiring complex reconstruction. Current clinical management strategies for these conditions are suboptimal and dubious at best. The gold standard in treatment of severe radiation injury is free tissue transfer; however, this requires a large operation that is limited to select candidates.
Methods: With the goal to expand current treatment options and to assuage the devastating sequelae of radiation injury on surrounding normal tissue, our laboratory has performed years of translational studies aimed at remediating bone healing and regeneration in irradiated fields. Three therapeutics (amifostine, deferoxamine, and adipose-derived stem cells) have demonstrated great promise in promoting healing and regeneration of irradiated bone.
Results: Amifostine confers prophylactic protection, whereas deferoxamine and adipose-derived stem cells function to remediate postradiation associated injury.
Conclusions: These prospective therapeutics exploit a mechanism attributed to increasing angiogenesis and ultimately function to protect or restore cellularity, normal cellular function, osteogenesis, and bone healing to nonirradiated metrics. These discoveries may offer innovative treatment alternatives to free tissue transfer with the added benefit of potentially preventing and treating osteoradionecrosis and pathologic fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245112 | PMC |
http://dx.doi.org/10.1097/GOX.0000000000003605 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFDistal tibial fractures are common lower-limb injuries and are generally associated with a high risk of postoperative complications, especially in patients with multiple medical comorbidities. This study sought to ascertain the efficacy of retrograde intramedullary tibial nails (RTN) for treating extra-articular distal tibial fractures in high-risk patients. Between January 2019 and December 2021, 13 patients considered at high risk for postoperative complications underwent RTN fixation.
View Article and Find Full Text PDFThe aim of the study was to compare the outcomes of bone transport in treating upper- middle vs. lower- middle tibial bone defects. Sixty-two patients with tibial infected large segmental defects treated by bone transport were analyzed retrospectively and divided into distal group (lower- middle tibial bone defects and proximal transport, n=38) and proximal group (upper- middle tibial bone defects and distal transport, n=24).
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of the presence of the "cortex sign" (corticalization) in femoral diaphysis fractures determined by the dynamization of nails because of delayed union. The study included 12 patients with a closed transverse femoral fracture (AO 32a3) treated with dynamization (all the screws distal of the nail were removed) because of delayed healing and followed up for at least 2 years. These patients were evaluated for the presence of bone union, cortex-like sclerosis (corticalization) distal to the nail, and the distance of the corticalization from the joint during follow- up after dynamization.
View Article and Find Full Text PDFCephalomedullary nail is the gold standard treatment for intertrochanteric fracture in geriatric population. The aim of the study was to investigate the differences of the reamed versus the unreamed short proximal femoral nailing (PFN), in terms of the duration of surgery and the outcome. The impact of patients and fracture characteristics to the outcome was also evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!