Objective: We propose a MATLAB-based tool to convert electrocardiography (ECG) waveforms from paper-based ECG records into digitized ECG signals that is vendor-agnostic. The tool is packaged as an open source standalone graphical user interface (GUI) based application.

Methods And Procedures: To reach this objective we: (1) preprocess the ECG records, which includes skew correction, background grid removal and linear filtering; (2) segment ECG signals using Connected Components Analysis (CCA); (3) implement Optical Character Recognition (OCR) for removal of overlapping ECG lead characters and for interfacing of patients' demographic information with their research records or their electronic medical record (EMR). The ECG digitization results are validated through a reader study where clinically salient features, such as intervals of QRST complex, between the paper ECG records and the digitized ECG records are compared.

Results: Comparison of clinically important features between the paper-based ECG records and the digitized ECG signals, reveals intra- and inter-observer correlations of 0.86-0.99 and 0.79-0.94, respectively. The kappa statistic was found to average at 0.86 and 0.72 for intra- and inter-observer correlations, respectively.

Conclusion: The clinically salient features of the ECG waveforms such as the intervals of QRST complex, are preserved during the digitization procedure. Clinical and Healthcare Impact: This open-source digitization tool can be used as a research resource to digitize paper ECG records thereby enabling development of new prediction algorithms to risk stratify individuals with cardiovascular disease, and/or allow for development of ECG-based cardiovascular diagnoses relying upon automated digital algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248903PMC
http://dx.doi.org/10.1109/JTEHM.2021.3083482DOI Listing

Publication Analysis

Top Keywords

ecg records
24
ecg
14
paper ecg
12
records digitized
12
digitized ecg
12
ecg signals
12
optical character
8
character recognition
8
ecg digitization
8
ecg waveforms
8

Similar Publications

Stress classification with in-ear heartbeat sounds.

Comput Biol Med

December 2024

École de technologie supérieure, 1100 Notre-Dame St W, Montreal, H3C 1K3, Quebec, Canada; Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), 527 Rue Sherbrooke O #8, Montréal, QC H3A 1E3, Canada. Electronic address:

Background: Although stress plays a key role in tinnitus and decreased sound tolerance, conventional hearing devices used to manage these conditions are not currently capable of monitoring the wearer's stress level. The aim of this study was to assess the feasibility of stress monitoring with an in-ear device.

Method: In-ear heartbeat sounds and clinical-grade electrocardiography (ECG) signals were simultaneously recorded while 30 healthy young adults underwent a stress protocol.

View Article and Find Full Text PDF

Design and use of a Denoising Convolutional Autoencoder for reconstructing electrocardiogram signals at super resolution.

Artif Intell Med

December 2024

Department of Computer Science and Technology, Cambridge University, Cambridge, United Kingdom. Electronic address:

Electrocardiogram signals play a pivotal role in cardiovascular diagnostics, providing essential information on electrical hearth activity. However, inherent noise and limited resolution can hinder an accurate interpretation of the recordings. In this paper an advanced Denoising Convolutional Autoencoder designed to process electrocardiogram signals, generating super-resolution reconstructions is proposed; this is followed by in-depth analysis of the enhanced signals.

View Article and Find Full Text PDF

Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).

View Article and Find Full Text PDF

Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Given its often-paroxysmal nature, screening at a single time point, using a 12-lead electrocardiogram (ECG) or a Holter monitor, has limited benefit. The AliveCor KardiaMobile device is a validated ECG recorder that can be used for patient-directed arrhythmia diagnosis and symptom-rhythm correlation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!