Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common critical diseases. Bone marrow mesenchymal stem cell (BMSC) transplantation is previously shown to effectively rescue injured lung tissues. The therapeutic mechanism of BMSC-derived exosomes is not fully understood. Here, we investigated the BMSC-derived exosomal microRNAs (miRNAs) on effecting lipopolysaccharide- (LPS-) induced ALI and its mechanism. , rat alveolar macrophages were treated with or without exosomes in the presence of 10 g/ml LPS for 24 h. Cell viability was determined with Cell Counting Kit-8 assay. Apoptotic ratio was determined with TUNEL and Annexin V-FITC/PI double staining. The levels of miR-384-5p and autophagy-associated genes were measured by RT-qPCR and western blot. Autophagy was observed by TEM and assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay. , we constructed LPS-induced ALI rat models. Exosomes were injected into rats via the caudal vein or trachea 4 h later after LPS treatment. The lung histological pathology was determined by H&E staining. Pulmonary vascular permeability was assessed by wet-to-dry weight ratio and Evans blue dye leakage assay, and inflammatory cytokines in serum and BALF were measured by ELISA. Furthermore, the therapeutic mechanism involved in miR-384-5p and Beclin-1 was determined. The results showed that BMSC-derived exosomes were taken up by the alveolar macrophages and attenuated LPS-induced alveolar macrophage viability loss and apoptosis. Exosomes effectively improved the survival rate of ALI rats within 7 days, which was associated with alleviating lung pathological changes and pulmonary vascular permeability and attenuating inflammatory response. Furthermore, this study for the first time found that miR-384-5p was enriched in BMSC-derived exosomes, and exosomal miR-384-5p resulted in relieving LPS-injured autophagy disorder in alveolar macrophages by targeting Beclin-1. Therefore, exosomal miR-384-5p could be demonstrated as a promising therapeutic strategy for ALI/ARDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216833PMC
http://dx.doi.org/10.1155/2021/9973457DOI Listing

Publication Analysis

Top Keywords

bmsc-derived exosomes
16
alveolar macrophages
12
acute lung
8
lung injury
8
alveolar macrophage
8
therapeutic mechanism
8
pulmonary vascular
8
vascular permeability
8
exosomal mir-384-5p
8
exosomes
6

Similar Publications

Background: Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is characterized by repetitive pharyngeal collapses during sleep, which leads to intermittent hypoxia, a risk factor of OSA-related cardiovascular morbidity.In this work, exosome isolation and identification with ultracentrifugation, transmission electron microscopy, nanoparticle tracking analysis, and Western blot assay were carried out. H9C2 cells were subjected to chronic intermittent hypoxia (CIH) treatment, which was followed by bone marrow mesenchymal stem cell (BMSC) -derived exosome treatment.

View Article and Find Full Text PDF

A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes.

Int J Oral Sci

December 2024

Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.

Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cell-derived exosomes improve cancer drug delivery in human cell lines and a mouse osteosarcoma model.

Front Oncol

November 2024

Orthopaedics Department, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.

Introduction: Osteosarcoma is the most common primary bone tumor. Patients require chemotherapy drugs with high-targeting ability and low off-target toxicity to improve their survival. Exosomes are biological vesicles that mediate long-distance communication between cells and naturally target their source sites.

View Article and Find Full Text PDF

BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization.

Mol Med

November 2024

Department of Clinial Laboratory, Capital Medical University Affiliated Beijing Jishuitan Hospital, Xinjiekou No. 31 East Street, Xicheng District, Beijing, 100035, People's Republic of China.

Osteoporosis is characterized by reduced bone mass due to imbalanced bone metabolism. Exosomes derived from bone mesenchymal stem cells (BMSCs) have been shown to play roles in various diseases. This study aimed to clarify the regulatory function and molecular mechanism of BMSCs-derived exosomes in osteogenic differentiation and their potential therapeutic effects on osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!