Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. , treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256153 | PMC |
http://dx.doi.org/10.3389/fneur.2021.662235 | DOI Listing |
J Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Physiology, University of Seville, Seville, Spain.
Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.
View Article and Find Full Text PDFCell Rep
January 2025
The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China.
Nutrients
November 2024
Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil.
Background: Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!