A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accurate Prediction of Children's ADHD Severity Using Family Burden Information: A Neural Lasso Approach. | LitMetric

The deep lasso algorithm (dlasso) is introduced as a neural version of the statistical linear lasso algorithm that holds benefits from both methodologies: feature selection and automatic optimization of the parameters (including the regularization parameter). This last property makes dlasso particularly attractive for feature selection on small samples. In the two first conducted experiments, it was observed that dlasso is capable of obtaining better performance than its non-neuronal version (traditional lasso), in terms of predictive error and correct variable selection. Once that dlasso performance has been assessed, it is used to determine whether it is possible to predict the severity of symptoms in children with ADHD from four scales that measure family burden, family functioning, parental satisfaction, and parental mental health. Results show that dlasso is able to predict parents' assessment of the severity of their children's inattention from only seven items from the previous scales. These items are related to parents' satisfaction and degree of parental burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255467PMC
http://dx.doi.org/10.3389/fncom.2021.674028DOI Listing

Publication Analysis

Top Keywords

family burden
8
lasso algorithm
8
feature selection
8
dlasso
5
accurate prediction
4
prediction children's
4
children's adhd
4
adhd severity
4
severity family
4
burden neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!