Purpose: To analyse the clinical outcome in patients with meibomian gland dysfunction (MGD) who underwent intense pulsed light (IPL) plus low-level light therapy (LLL).

Materials And Methods: The prospective non-comparative study included identified by MGD patients with altered interferometry and lower loss area of the meibomian glands (LAMG), who underwent IPL plus LLL, between July 2020 and August 2020. A multimodal assessment was performed before, 2-3 weeks, and 6 months after treatment. The main outcome was lipid layer thickness (LLT) and the secondary outcomes were the ocular surface disease index (OSDI) score, presence of corneal fluorescein staining (CFS), blink rate (BR), Schirmer test (ST), tear meniscus height (TMH), tear osmolarity (OSM), non-invasive break-up time (NIBUT) and LAMG.

Results: This study included 62 eyes of 31 patients, 61.3% female, with a mean age of 66.94±9.08 years at the time of IPL plus LLL treatment. LLT (<0.001) grades improved 6 months after treatment. The mean OSDI score improved (p<0.001) from 45.02±21.17 (severe symptoms) to 22.35±17.68 (moderate symptoms) at 2-3 weeks and 8.24±17.9.91 (normal) at 6 months after treatment. CFS was identified in 51.6% (32/62) before and in 45.2% (28/62) 6 months (p=0.293) after treatment. ST (p=0.014) grades improved; OSM grades mild worsened (p<0.001); TMH, NIBUT and LAMG grades did not modify 6 months after treatment. No patient suffered any adverse effects.

Conclusion: IPL combined with LLL was effective and safe, improving the lipid layer thickness in MGD and decreasing the level of symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253890PMC
http://dx.doi.org/10.2147/OPTH.S318885DOI Listing

Publication Analysis

Top Keywords

intense pulsed
8
low-level light
8
light therapy
8
meibomian gland
8
gland dysfunction
8
study included
8
ipl lll
8
pulsed low-level
4
therapy meibomian
4
dysfunction purpose
4

Similar Publications

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Low-Intensity Pulsed Ultrasound Delays the Onset of Osteoporosis and Dyslipidemia in Mice With Premature Ovarian Insufficiency.

J Ultrasound Med

January 2025

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Objectives: The pathogenesis of premature ovarian insufficiency (POI) not only affects the ovarian structure and function but also gives rise to complications such as osteoporosis and dyslipidemia. Although low-intensity pulsed ultrasound (LIPUS) has been proven effective in treating POI, its impact on the associated complications remains unexplored. Therefore, this study aims to investigate the effects of LIPUS irradiation on osteoporosis and dyslipidemia in a mouse model of POI.

View Article and Find Full Text PDF

Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!