The electroretinogram in the genomics era: outer retinal disorders.

Eye (Lond)

Visual Electrophysiology Unit, Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.

Published: September 2021

The inherited retinal diseases (IRDs) have traditionally been described phenotypically with the description evolving to incorporate more sophisticated structural and functional assessments. In the last 25 years there has been considerable advances in the understanding of underlying genetic aetiologies. The role of the ophthalmologist is now to work in a multi-disciplinary team to identify the disease-causing genotype, which might be amenable to gene-directed intervention. Visual electrophysiology is an important tool to assist the ophthalmologist in guiding the clinical geneticist to reach a final molecular diagnosis. This review outlines the physiological basis for the ISCEV standard electrophysiology tests, the role of electrophysiology in localising the functional deficit, correlation with structural findings to guide diagnosis and finally management of IRDs in the era of genomics with emphasis on the outer retina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377088PMC
http://dx.doi.org/10.1038/s41433-021-01659-yDOI Listing

Publication Analysis

Top Keywords

electroretinogram genomics
4
genomics era
4
era outer
4
outer retinal
4
retinal disorders
4
disorders inherited
4
inherited retinal
4
retinal diseases
4
diseases irds
4
irds traditionally
4

Similar Publications

Posterior segment findings in a patient with a biallelic pathogenic variant.

Am J Ophthalmol Case Rep

December 2024

Genomic Laboratory, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.

Purpose: To report the posterior segment findings in a case with a biallelic frameshift pathogenic variant at chromosome 10 c.616del exon7 p.(His206Thrfs∗61).

View Article and Find Full Text PDF

Genome or prime editing has become a promising tool for the treatment of hereditary disorders affecting the inner retina, such as dominant optic neuropathies. In vivo delivery of gene editors, such as Cas9, is typically achieved using recombinant adeno-associated virus (rAAV) vectors, which have a broad range of cellular tropisms and are well tolerated following intravitreal administration. Owing to the large size of gene editing constructs and the limited carrying capacity of rAAV (<5.

View Article and Find Full Text PDF

A Supramolecular Deferoxamine-Crisaborole Nanoparticle Targets Ferroptosis, Inflammation, and Oxidative Stress in the Treatment of Retinal Ischemia/Reperfusion Injury.

Nano Lett

December 2024

Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China.

Retinal ischemia-reperfusion (IR) injury is a major cause of vision loss worldwide, with ferroptosis, oxidative stress, and inflammation playing key roles in its pathogenesis. Currently, treatments targeting multiple aspects of this condition are limited. This study introduces a supramolecular nanoparticle combining the phosphodiesterase 4 (PDE4) inhibitor crisaborole and the ferroptosis inhibitor deferoxamine to address these pathological processes.

View Article and Find Full Text PDF

Onset and Progression of Disease in Nonhuman Primates With PDE6C Cone Disorder.

Invest Ophthalmol Vis Sci

December 2024

Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States.

Purpose: The California National Primate Research Center contains a colony of rhesus macaques with a homozygous missense mutation in PDE6C (R565Q) which causes a cone disorder similar to PDE6C achromatopsia in humans. The purposes of this study are to characterize the phenotype in PDE6C macaques in detail to determine the onset of the cone phenotype, the degree to which the phenotype progresses, if heterozygote animals have an intermediate phenotype, and if rod photoreceptor function declines over time.

Methods: We analyzed spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and electroretinography (ERG) data from 102 eyes of 51 macaques (aged 0.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!