Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8 T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/β receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611502 | PMC |
http://dx.doi.org/10.1126/scitranslmed.abc3911 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.
View Article and Find Full Text PDFCancer Cell
December 2024
Pre-Cancer Immunology Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence. Electronic address:
In this issue of Cancer Cell, Son et al. highlight an unexpected role for skin β-papillomaviruses in the protection against skin carcinogenesis. T cell immunity to skin papillomaviruses blocks the expansion of p53 mutant clones in ultraviolet (UV) radiation-damaged skin, preventing the development of skin cancer.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Obstetrics and Gynaecology, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
Objective: Interleukin-17 E (IL-17E) is a pro-inflammatory cytokine that participates in the inflammatory response and tumorigenesis. However, the function of IL-17E in non-small cell lung cancer (NSCLC) remains largely unknown.
Methods: The clinical value of IL-17E was determined by immunohistochemistry (IHC) in 75 cases of NSCLC tissues.
Cytotechnology
February 2025
Future Medical Laboratory, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China.
Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China. Electronic address:
Interleukin-15 (IL-15) emerges as a promising immunotherapeutic candidate, but the therapeutic utility remains concern due to the unexpected systematic stress. Here, we propose that the mRNA lipid nanoparticle (mRNA-LNP) system can balance the issue through targeted delivery to increase IL-15 concentration in the tumor area and reduce leakage into the circulation. In the established Structure-driven TARgeting (STAR) platform, the LNP and LNP can effectively and selectively deliver optimized IL-15 superagonists mRNAs to local and lungs, respectively, in relevant tumor models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!