Background: Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs involved in the regulation of various physiological and pathological cellular processes, including transcription, intracellular trafficking, and chromosome remodeling. LncRNAs deregulation was linked to the development and progression of various cancer types, such as acute leukemias. In this context, lncRNAs were also evaluated as a novel class of biomarkers for cancer diagnosis and prognosis. Here, we analyzed TEX41 in childhood B cell acute lymphoid leukemia (B-ALL).

Methods: Total RNA was extracted from pediatric B-ALL patients (at diagnosis and after induction of therapy) and from healthy subjects. Total RNA was also extracted from different leukemia cell line models. The expression level of TEX41 was evaluated by q-RT-PCR. Also, the dataset deposited by St. Jude Children's Research Hospital was consulted. Furthermore, the silencing of TEX41 in RS4;11 cell line was obtained by 2'-Deoxy, 2'Fluroarabino Nucleic Acids (2'F-ANAs) Oligonucleotides, and the effect on cell proliferation was evaluated. Cell cycle progression and its regulators were analyzed by flow cytometry and immunoblotting.

Results: We exploited the St Jude Cloud database and found that TEX41 is a lncRNA primarily expressed in the case of B-ALL (n = 79) while its expression levels are low/absent for T-cell ALL (n = 25) and acute myeloid leukemia (n = 38). The association of TEX41 with B-ALL was confirmed by real-time PCR assays. TEX41 disclosed increased expression levels in bone marrow from patients with B-ALL at diagnosis, while its expression levels became low or absent when retested in Bone Marrow cells of the same patient after 1 month of induction therapy. Also, silencing experiments performed on RS4;11 cells showed that TEX41 downregulation impaired in vitro leukemic cell growth determining their arrest in the G2-M phase and the deregulation of cell cycle proteins.

Conclusions: Our findings highlight that TEX41 is an upregulated lncRNA in the case of B-ALL and this feature makes it a novel potential biomarker for the diagnosis of this leukemia subtype in pediatric patients. Finally, TEX41 expression seems to be critical for leukemic proliferation, indeed, silencing experiments targeting TEX41 mRNA in the RS4;11 cell line hampered in vitro cell growth and cell cycle progression, by inducing G2-M arrest as confirmed propidium iodide staining and by the upregulation of p53 and p21 proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261931PMC
http://dx.doi.org/10.1186/s40364-021-00307-7DOI Listing

Publication Analysis

Top Keywords

cell growth
12
cell cycle
12
expression levels
12
cell
11
tex41
10
tex41 upregulated
8
leukemic cell
8
total rna
8
rna extracted
8
induction therapy
8

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

Background: The prognosis for non-small cell lung cancer (NSCLC) patients treated with standard platinum-based chemotherapy was suboptimal, with safety concerns. Following encouraging results from a preliminary phase I study, this phase II trial investigated the efficacy and safety of first-line sintilimab and anlotinib in metastatic NSCLC.

Methods: In this open-label, randomized controlled trial (NCT04124731), metastatic NSCLC without epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or proto-oncogene tyrosine-protein kinase ROS (ROS1) mutations, and previous treatments for metastatic disease were enrolled.

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!