Plasma glutamine status at intensive care unit admission: an independent risk factor for mortality in critical illness.

Crit Care

Department of Anaesthesiology and Intensive Care, CLINTEC, Karolinska Institutet and Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge Stockholm, B31 Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.

Published: July 2021

Background: A plasma glutamine concentration outside the normal range at Intensive Care Unit (ICU) admission has been reported to be associated with an increased mortality rate. Whereas hypoglutaminemia has been frequently reported, the number of patients with hyperglutaminemia has so far been quite few. Therefore, the association between hyperglutaminemia and mortality outcomes was studied in a prospective, observational study.

Patients And Methods: Consecutive admissions to a mixed general ICU were eligible. Exclusion criteria were < 18 years of age, readmissions, no informed consent, or a 'do not resuscitate' order at admission. A blood sample was saved within one hour from admission to be analysed by high-pressure liquid chromatography for glutamine concentration. Conventional risk scoring (Simplified Acute Physiology Score and Sequential Organ Failure Assessment) at admission, and mortality outcomes were recorded for all included patients.

Results: Out of 269 included patients, 26 were hyperglutaminemic (≥ 930 µmol/L) at admission. The six-month mortality rate for this subgroup was 46%, compared to 18% for patients with a plasma glutamine concentration < 930 µmol/L (P = 0.002). A regression analysis showed that hyperglutaminemia was an independent mortality predictor that added prediction value to conventional admission risk scoring and age.

Conclusion: Hyperglutaminemia in critical illness at ICU admission was an independent mortality predictor, often but not always, associated with an acute liver condition. The mechanism behind a plasma glutamine concentration outside normal range, as well as the prognostic value of repeated measurements of plasma glutamine during ICU stay, remains to be investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265095PMC
http://dx.doi.org/10.1186/s13054-021-03640-3DOI Listing

Publication Analysis

Top Keywords

plasma glutamine
8
intensive care
8
care unit
8
glutamine status
4
status intensive
4
unit admission
4
admission independent
4
independent risk
4
risk factor
4
factor mortality
4

Similar Publications

Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.

View Article and Find Full Text PDF

Exploring the causal role of plasma metabolites and metabolite ratios in prostate cancer: a two-sample Mendelian randomization study.

Front Mol Biosci

January 2025

Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.

Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.

Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.

View Article and Find Full Text PDF

Background: Dogs with hepatocutaneous syndrome (HCS) have marked plasma hypoaminoacidemia, but its occurrence in dogs with chronic liver diseases not associated with HCS (non-HCS CLD) is unknown.

Objectives: To determine if plasma hypoaminoacidemia occurs in dogs with non-HCS CLD, compare plasma amino acid (PAA) profiles between dogs with non-HCS CLD and HCS, and define a sensitive and specific PAA pattern for diagnosing HCS.

Animals: Data were collected from client-owned dogs, a prospective cohort of 32 with CLD and 1 with HCS, and a retrospective cohort of 7 with HCS.

View Article and Find Full Text PDF

Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only.

View Article and Find Full Text PDF

CD300a and CD300A, among the CD300 immunoglobulin (Ig)-like receptor family members in mice and humans, respectively, are expressed on myeloid cell lineage. The interaction of CD300a and CD300A with their ligands phosphatidylserine and phosphatidylethanolamine, respectively, exposed on the plasma membrane of dead cells mediate an inhibitory signal in myeloid cells. We previously reported that a neutralizing antimouse CD300a monoclonal antibody (mAb) enhanced efferocytosis by macrophages and ameliorated acute ischemic stroke (AIS) in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!