Introduction: The claustrum is a structure involved in formation of several cortical and subcortical neural microcircuits which may be involved in such functions as conscious sensations and rewarding behavior. The claustrum is regarded as a multi-modal information processing network. Pathology of the claustrum is seen in certain neurological disorders. To date, there are not enough comprehensive studies that contain accurate information regarding involvement of the claustrum in development of neurological disorders.

Objective: Our review aims to provide an update on claustrum anatomy, ontogenesis, cytoarchitecture, neural networks and their functional relation to the incidence of neurological diseases.

Materials And Methods: A literature review was conducted using the Google Scholar, PubMed, NCBI MedLine, and eLibrary databases.

Results: Despite new methods that have made it possible to study the claustrum at the molecular, genetic and epigenetic levels, its functions and connectivity are still poorly understood. The anatomical location, relatively uniform cytoarchitecture, and vast network of connections suggest a divergent role of the claustrum in integration and processing of input information and formation of coherent perceptions. Several studies have shown changes in the appearance, structure and volume of the claustrum in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), autism, schizophrenia, and depressive disorders. Taking into account the structure, ontogenesis, and functions of the claustrum, this literature review offers insight into understanding the crucial role of this structure in brain function and behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261917PMC
http://dx.doi.org/10.1186/s12993-021-00181-1DOI Listing

Publication Analysis

Top Keywords

claustrum
9
literature review
8
mystery claustral
4
claustral neural
4
neural circuits
4
circuits updates
4
updates role
4
role neurodegenerative
4
neurodegenerative pathology
4
pathology introduction
4

Similar Publications

The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (EN.

View Article and Find Full Text PDF

Aβ42 biomarker linked to insula, striatum, thalamus and claustrum in dementia with Lewy bodies.

Geroscience

January 2025

ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France.

The differential mechanisms between proteinopathies and neurodegeneration in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remain unclear. To address this issue, we conducted a voxel-based morphometry and cerebrospinal fluid biomarker (α-synuclein, Aβ42, t-Tau and p-Tau) level correlation study in patients with DLB, AD and mixed cases (AD + DLB). Cerebrospinal fluid samples obtained by lumbar puncture and whole-brain T1-weighted images were collected in the AlphaLewyMA cohort.

View Article and Find Full Text PDF

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.

View Article and Find Full Text PDF

Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!