NELL2-cdc42 signaling regulates BAF complexes and Ewing sarcoma cell growth.

Cell Rep

Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA. Electronic address:

Published: July 2021

BAF chromatin remodeling complexes play important roles in chromatin regulation and cancer. Here, we report that Ewing sarcoma cells are dependent on the autocrine signaling mediated by NELL2, a secreted glycoprotein that has been characterized as an axon guidance molecule. NELL2 uses Robo3 as the receptor to transmit critical growth signaling. NELL2 signaling inhibits cdc42 and upregulates BAF complexes and EWS-FLI1 transcriptional output. We demonstrate that cdc42 is a negative regulator of BAF complexes, inducing actin polymerization and complex disassembly. Furthermore, we identify NELL2CD133EWS-FLI1 and NELL2CD133EWS-FLI1 populations in Ewing sarcoma, which display phenotypes consistent with high and low NELL2 signaling, respectively. We show that NELL2, CD133, and EWS-FLI1 positively regulate each other and upregulate BAF complexes and cell proliferation in Ewing sarcoma. These results reveal a signaling pathway regulating critical chromatin remodeling complexes and cancer cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312579PMC
http://dx.doi.org/10.1016/j.celrep.2021.109254DOI Listing

Publication Analysis

Top Keywords

baf complexes
16
ewing sarcoma
16
chromatin remodeling
8
remodeling complexes
8
signaling nell2
8
nell2 signaling
8
cell proliferation
8
complexes
6
baf
5
signaling
5

Similar Publications

Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.

View Article and Find Full Text PDF

Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.

View Article and Find Full Text PDF

Argonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.

View Article and Find Full Text PDF

BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.

View Article and Find Full Text PDF

PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

February 2025

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!