Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Depression is one of the most common and disabling mental disorders. There is growing evidence that 5-HT1A receptor is involved in the regulation of depressive-related behaviors. However, the exact mechanism underlying the role of 5-HT1A receptor in depression remains unknown. Histone acetylation is associated with the pathophysiology and treatment of depression. In the current study, we investigated whether the epigenetic histone deacetylase (HDAC)-induced histone acetylation mediates the regulation of 5-HT1A receptor in depressive behaviors. We showed that 5-HT1A receptor selective agonist (±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide led to significant increase in acetylation of H3 at lysine 9 (Ac-H3K9) and H4 at lysine 5 (Ac-H4K5) and lysine 12 (Ac-H4K12) with obviously decreasing histone deacetylase 1 (HDAC1), histone deacetylase 2 (HDAC2), histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5) expression in hippocampus of mice. Conversely, 5-HT1A receptor selective antagonist NAN-190 decreased the level of acetylation of H3 and H4 with increasing the expression of HDAC1, HDAC2, HDAC4 and HDAC5 in the hippocampus. Furthermore, we found that HDAC inhibitors, trichostatin A or suberoylanilide hydroxamic acid infusion to hippocampus prevented the depressive behaviors induced by NAN-190, as well as histone H3 and H4 acetylation in mice. Our results suggested that epigenetic histone acetylation coupled with 5-HT1A receptor may play vital role in the pathophysiology and treatment of depressive disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000001693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!