In this study, we describe the legacy effects of a soil sulfur amendment experiment performed 6 years prior and the resulting alterations to the rhizosphere communities of fir trees on a Christmas tree plantation. The pH of bulk soil was ∼1.4 pH units lower than that of untreated soils and was associated with reduced Ca, Mg, and organic matter contents. Similarly, root chemistry differed due to the treatment, with roots in sulfur-amended soils showing significantly higher Al, Mn, and Zn contents and reduced levels of B and Ca. 16S rRNA and 18S rRNA gene sequencing was pursued to characterize the bacterial/archaeal and eukaryotic communities in the rhizosphere soils. The treatment induced dramatic and significant changes in the microbial populations, with thousands of 16S rRNA gene sequence variants and hundreds of 18S rRNA gene variants being significantly different in relative abundances between the treatments. Additionally, co-occurrence networks showed that bacterial and eukaryotic interactions, network topology, and hub taxa were significantly different when constructed from the control and treated soil 16S and 18S rRNA gene amplicon libraries. Metagenome sequencing identified several genes related to transport proteins that differentiated the functional potentials of the communities between treatments, pointing to physiological adaptations in the microbial communities for living at altered pH. These data show that a legacy of soil acidification increased the heterogeneity of the soil communities as well as decreasing taxon connections, pointing to a state of ecosystem instability that has potentially persisted for 6 years. We used sulfur incorporation to investigate the legacy effects of lowered soil pH on the bacterial and eukaryotic populations in the rhizosphere of Christmas trees. Acidification of the soils drove alterations of fir tree root chemistry and large shifts in the taxonomic and functional compositions of the communities. These data demonstrate that soil pH influences are manifest across all organisms inhabiting the soil, from the host plant to the microorganisms inhabiting the rhizosphere soils. Thus, this study highlights the long-lasting influence of altering soil pH on soil and plant health as well as the status of the microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552644PMC
http://dx.doi.org/10.1128/Spectrum.00166-21DOI Listing

Publication Analysis

Top Keywords

rrna gene
16
soil
12
bacterial eukaryotic
12
18s rrna
12
soil sulfur
8
sulfur amendment
8
fir tree
8
eukaryotic communities
8
legacy effects
8
root chemistry
8

Similar Publications

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.

View Article and Find Full Text PDF

Development of a mitochondrial mini-barcode and its application in metabarcoding for identification of leech in traditional Chinese medicine.

Sci Rep

January 2025

National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry, 201203, Shanghai, People's Republic of China.

In Traditional Chinese Medicine (TCM), the medicinal leech is vital for treatments to promote blood circulation and eliminate blood stasis. However, the prevalence of counterfeit leech products in the market undermines the quality and efficacy of these remedies. Traditional DNA barcoding techniques, such as the COI barcode, have been limited in their application due to amplification challenges.

View Article and Find Full Text PDF

Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.

View Article and Find Full Text PDF

Background: Gut microbiota disturbance may worsen critical illnesses and is responsible for the progression of multiple organ dysfunction syndrome. In our previous study, there was a trend towards a higher α-diversity of the gut microbiota in sequential feeding (SF) than in continuous feeding (CF) for critically ill patients. We designed this non-blinded, randomized controlled study to confirm these results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!