Objectives: The study aimed to determine whether dental pulp stem cell-derived exosomes (DPSC-Exos) exert protective effects against cerebral ischaemia-reperfusion (I/R) injury and explore its underlying mechanism.

Materials And Methods: Exosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC-Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen-glucose deprivation-reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC-Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF-κB p65, HMGB1, IL-6, IL-1β and TNF-α were determined by western blot or enzyme-linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining.

Results: DPSC-Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC-Exos inhibited the I/R-mediated expression of TLR4, MyD88 and NF-κB significantly. DPSC-Exos also reduced the protein expression of IL-6, IL-1β and TNF-α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC-Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage.

Conclusions: DPSC-Exos can ameliorate I/R-induced cerebral injury in mice. Its anti-inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF-κB pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349657PMC
http://dx.doi.org/10.1111/cpr.13093DOI Listing

Publication Analysis

Top Keywords

dental pulp
8
pulp stem
8
stem cell-derived
8
cell-derived exosomes
8
cerebral ischaemia-reperfusion
8
dpsc-exos
8
i/r injury
8
brain oedema
8
oedema cerebral
8
cerebral infarction
8

Similar Publications

Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling.

Int J Biol Macromol

December 2024

School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses.

View Article and Find Full Text PDF

The Grotte du Bison Neandertals (Arcy-sur-Cure, France).

J Hum Evol

December 2024

Univ. Paris 1 Panthéon-Sorbonne, Univ. Paris Ouest Nanterre La Défense, MSH Mondes-CNRS-Ministère de la Culture, ArScAn, UMR 7041, 92000, Nanterre, France.

The Grotte du Bison, in Arcy-sur-Cure (Yonne, France), yielded a large assemblage of 49 Neandertal remains from late Mousterian layers, offering critical insights for the study of Middle to Upper Paleolithic populations of Western Europe. Previous studies described the external morphology of 13 isolated teeth and a partial maxilla. Building on this previous work, the current study provides further descriptions and analyses of the remains, including one postcranial fragment, six cranial fragments, two maxillary fragments, and 40 isolated teeth.

View Article and Find Full Text PDF

In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.

Stem Cells Transl Med

December 2024

Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.

The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.

View Article and Find Full Text PDF

Tumor Necrosis Factor Superfamily 14 Regulates the Inflammatory Response of Human Dental Pulp Stem Cells.

Curr Issues Mol Biol

December 2024

Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.

Dental caries is a highly prevalent chronic disease that leads to dental pulp inflammation. It is treated by removing the damaged tooth structure and applying a material that promotes resolution of pulpal inflammation. Tumor necrosis factor superfamily 14 (TNFSF14) is an immunomodulatory cytokine and a member of the TNF superfamily.

View Article and Find Full Text PDF

The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!