Phenothiazine (PTZ) is one of the most extensively investigated S, N heterocyclic aromatic hydrocarbons due to its unique optical, electronic properties, flexibility of functionalization, low cost, and commercial availability. Hence, PTZ and its derivative materials have been attractive in various optoelectronic applications in the last few years. In this prospective, we have focused on the most significant characteristics of PTZ and highlighted how the structural modifications such as different electron donors or acceptors, length of the π-conjugated system or spacers, polar or non-polar chains, and other functional groups influence the optoelectronic properties. This prospective provides a recent account of the advances in phenothiazine derivative materials as an active layer(s) for optoelectronic (viz. dye sensitized solar cells (DSSCs), perovskite solar cells (PSCs), organic solar cells (OSCs), organic light-emitting diodes (OLEDs), organic field-effect transistor (OFETs), chemosensing, nonlinear optical materials (NLOs), and supramolecular self-assembly applications. Finally, future prospects are discussed based on the structure-property relationship in PTZ-derivative materials. This overview will pave the way for researchers to design and develop new PTZ-functionalized structures and use them for various organic optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01185e | DOI Listing |
Light Sci Appl
January 2025
Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.
In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.
View Article and Find Full Text PDFChemistry
December 2024
Technological University Dublin, Institute of Polymers, Kevin Street, Dublin 8, Dublin, IRELAND.
Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
In recent advancements in life sciences, optical microscopy has played a crucial role in acquiring high-quality three-dimensional structural and functional information. However, the quality of 3D images is often compromised due to the intense scattering effect in biological tissues, compounded by several issues such as limited spatiotemporal resolution, low signal-to-noise ratio, inadequate depth of penetration, and high phototoxicity. Although various optical sectioning techniques have been developed to address these challenges, each method adheres to distinct imaging principles for specific applications.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.
The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.
View Article and Find Full Text PDFSmall
December 2024
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!