Molecular diagnosis of viral genotyping devoid of polymerase chain reaction (PCR) amplification in clinical cohorts has hitherto been challenging. Here we present a simplified molecular diagnostic strategy for direct genotyping of hepatitis C virus (HCV) 1 and 3 (prevalent worldwide) using a combination of rationally designed genotype-specific antisense oligonucleotides (ASOs) and plasmonic gold nanoparticles. The ASOs specific to genotypes 1 and 3 have been designed from the nonstructural region 5A (NS5A) of the viral genome using the ClustalW multiple sequence alignment tool. A total of 79 clinical samples including 18 HCV genotype 1, 18 HCV genotype 3, one HIV positive, one HBV positive, and 41 healthy controls have been tested against both the designed ASOs. The study reveals 100% specificity and sensitivity with the employed samples and thereby opens up new avenues for PCR-free direct genotyping of other viruses as well, through the rational design of ASOs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1an00590a | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, China.
Background: Development of novel chiral antifungal agents for effective control of plant pathogens is urgently needed. In this study, a series of pyrazol-5-yl-benzamide derivatives containing chiral oxazoline moiety were rationally designed and developed based on molecular docking.
Results: The in vitro antifungal assay results indicated that compounds (rac)-4h (R = Et), (S)-4 h (R = S-Et) and (R)-4 h (R = R-Et) exhibited remarkable antifungal activities against Valsa mali with median effective concentration (EC) values of 0.
ACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Sulfurized polyacrylonitrile (SPAN) exhibits a very high cycle stability by overcoming the shuttle effect of conventional Li-S batteries. However, there are still controversies in SPAN about the bonding types of sulfur with the matrix, their critical synthesis temperature regions, and their roles in the electrochemical lithium storage reaction, seriously hindering the economical synthesis of SPAN, the optimization of performances, and the exploration of other SPAN-like alternatives. The key to solving the above problems lies in accurate measurements of the thermodynamic evolution of bonding interactions in the synthesis process as well as in the electrochemical process.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
The optical control of physiological processes with high precision using photoswitches is an emerging strategy for non-invasive diagnosis and therapies, providing innovative solutions to complex biomedical challenges. Light-responsive cyclic conjugated-dienes (cCDs) have long been recognized for their 4π-photocyclization; however, photoswitching behaviour in medium-sized cCDs has recently been reported, representing a pioneering discovery in the field. Reinforced by previous experimental evidence corroborating the Woodward-Hoffmann rules, this report provides insight into the origin of the exotic dual photoexcitation mechanism devised to achieve thermo-reversible photoswitching in large cCDs with cyclodeca-1,3-diene as a prototype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!