Surgical trays contain unused instruments which generate wasted resources from unnecessary reprocessing/replacement costs. We implemented a quality improvement initiative to optimize surgical trays for common otolaryngology procedures, and examined the impact on costs, operating room (OR) efficiency, and patient safety.We studied five common otolaryngology procedures over a 10-month period at a single community hospital. We compared pre- and post-intervention outcome measures including instrument utilization, tray set up time, tray rebuilding time, and balancing measures (operative time, instrument recall, patient safety). We estimated cost-savings from an institutional perspective over 1- and 10-year time horizons. Costs were expressed in 2017 Canadian dollars and modeled as a function of surgical volume, labor costs, instrument depreciation, and indirect costs.A total of 238 procedures by six surgeons were observed. At baseline, only 35% of instruments were utilized. We achieved an average instrument reduction of 26%, yielding 1-year cost savings of $9,010 CDN and 10-year cost savings of $69,576 CDN. Tray optimization reduced average OR tray setup time by 2.5 ± 0.4 min (p = 0.03) and average tray rebuilding time by 1.4 ± 0.2 min (p = 0.06). There was minimal impact on balancing measures such as OR time, stakeholder perception of patient safety and trainee education, and only a single case of instrument recall.Surgical tray optimization is a simple, effective, and scalable strategy for reducing costs and improving OR efficiency without compromising patient safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-021-01753-4 | DOI Listing |
Dent J (Basel)
December 2024
Department of Life, Health and Environmental Sciences, Postgraduate School of Orthodontics, University of L'Aquila, 67100 L'Aquila, Italy.
The injection moulding technique (IMT) is a minimally invasive restorative treatment. This technique enables the application of thin, flowable composite layers into a stable, transparent silicone index that serves as a mould. Due to the fluid properties of the composite, it efficiently fills the silicone tray and seamlessly integrates with the tooth structure, often obviating tooth preparation and preserving overall tooth integrity.
View Article and Find Full Text PDFPediatr Exerc Sci
January 2025
Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax,Tunisia.
Adolescents with intellectual disabilities (ID) often encounter challenges in walking and mobility due to cognitive and motor impairments. This study aimed to investigate the impact of real-life motor complexity on walking and mobility in this population, particularly focusing on dual-task scenarios. Twenty-four adolescents with ID, divided into trained and sedentary groups, participated in the study.
View Article and Find Full Text PDFPLoS One
December 2024
Nanchang Institute of Science and Technology, School of Civil and Environmental Engineering, Nanchang, China.
Pressure Swing Distillation (PSD) is the only advanced technology that does not require the addition of third components to the system to enhance the separation of azeotropic mixtures. It outperforms homogeneous distillation for separating pressure-sensitive azeotropic mixtures. In this study, we aimed to separate methanol and toluene using the Non-Random Two-Liquid (NRTL) and Aspen Plus thermodynamic calculation models to simulate a binary homogeneous azeotropic system.
View Article and Find Full Text PDFJ Nat Med
December 2024
DiviLaboratory of Pharmacognosy, School of Pharmacy, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, Japan.
The traditional post-harvest processing method of Angelica acutiloba roots, which involves hanging the roots outdoors after being harvested, is known to promote the conversion of starch in roots into sucrose, thereby increasing sweetness. At the same time, this method increases the dilute ethanol-soluble extract (DEE) content in A. acutiloba roots to meet the standard set by the Japanese Pharmacopoeia 18th edition.
View Article and Find Full Text PDFBackground: Many hospitals and surgery centers have focused improvement efforts on operating room inefficiencies. A common inefficiency is missing and unusable surgical instrumentation, which can result in case delays and decreased effectiveness. Lean Six Sigma methodology, a set of process improvement tools focused on the reduction of waste and variation, has been used to identify and correct root causes of missing and unusable instrumentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!