Immunoglobulin A (IgA) nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Up to 40% of IgAN patients develop end-stage kidney disease after 15-20 years. Despite the poor prognosis associated with this multifactorial disease, no clear treatment strategy has been identified, primarily due to the lack of understanding of its pathogenesis. Clinical observations indicate that aberrant IgAN immune systems, rather than intrinsic renal abnormalities, may be involved in its pathogenesis. Moreover, nephritogenic IgA and its related immune complexes are considered to be produced not only in the mucosa, but also in systemic immune sites, such as the bone marrow; however, there are numerous challenges to understanding this dynamic and complex immune axis in humans. Thus, several investigators have used experimental animal models. Although there are inter-strain differences in IgA molecules and immune responses between humans and rodents, animal models remain a powerful tool for investigating IgAN's pathogenesis, and the subsequent development of effective treatments. Here, we introduced some classical models of IgAN with or without genetic manipulation and recent translational approaches with some promising models. This includes humanized mouse models expressing human IgA1 and human IgA Fc receptor (CD89) that develops spontaneously the disease. Pre-clinical studies targeting IgA1 are discussed. Together, animal models are very useful tools to study pathophysiology and to validate new therapeutic approaches for IgAN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00281-021-00878-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!