Diverse new azoloazines were synthesized from the reaction of fluorinated hydrazonoyl chlorides with heterocyclic thiones, 1,8-diaminonaphthalene, ketene aminal derivatives, and 4-amino-5-triflouromethyl-1,2,4-triazole-2-thiol. The mechanistic pathways and the structures of all synthesized derivatives were discussed and assured based on the available spectral data. The synthesized azoloazine derivatives were evaluated for their antifungal and antibacterial activities through zone of inhibition measurement. The results revealed promising antifungal activities for compounds , , ,, , and against the pathogenic fungal strains used; and compared to ketoconazole. In addition, compounds , , , and showed moderate antibacterial activities against most tested bacterial strains. Molecular docking studies of the promising compounds were carried out on leucyl-tRNA synthetase active site of , suggesting good binding in the active site forming stable complexes. Moreover, docking of the synthesized compounds was performed on the active site of SARS-CoV-2 3CLpro to predict their potential as a hopeful anti-COVID and to investigate their binding pattern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250121PMC
http://dx.doi.org/10.1002/jhet.4257DOI Listing

Publication Analysis

Top Keywords

active site
12
molecular docking
8
antibacterial activities
8
synthesis antimicrobial
4
antimicrobial azoloazines
4
azoloazines molecular
4
docking inhibiting
4
inhibiting covid-19
4
covid-19 diverse
4
diverse azoloazines
4

Similar Publications

The haploid induction ability analysis of various mutation of OsMATL and OsDMPs in rice.

BMC Biol

January 2025

National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.

Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.

View Article and Find Full Text PDF

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

IN SILICO AND IN VITRO ASSESSMENT OF ANTI-Leishmania infantum ACTIVITY OF A NOVEL CYCLOHEXYL-1,2,4-OXADIAZOLE DERIVATIVE.

Mol Biochem Parasitol

January 2025

Post-graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - CE, Brazil; Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio - CE, Brazil; Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza - CE, Brazil.

Globally, an estimated 1 billion people reside in endemic areas, and over 12 million individuals are infected with leishmaniasis. Despite its prevalence, leishmaniasis continues to be a neglected disease, mainly affecting underdeveloped countries. In Brazil, the available treatments are pentavalent antimonials and Amphotericin B, which are outdated, toxic, require prolonged parenteral administration and have limited efficacy.

View Article and Find Full Text PDF

Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.

View Article and Find Full Text PDF

Pt/α-MoC catalysts exhibit exceptional activity in low-temperature water-gas shift reactions. However, quantitatively identifying and fine-tuning the active sites has remained a significant challenge. In this study, we reveal that fully exposed monolayer Pt nanoclusters on molybdenum carbides demonstrate mass activity that exceeds that of bulk molybdenum carbide catalysts by one to two orders of magnitude at 100-200 °C for low-temperature water-gas shift reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!