Purpose: Where multiple in silico tools are concordant, the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) framework affords supporting evidence toward pathogenicity or benignity, equivalent to a likelihood ratio of ~2. However, limited availability of "clinical truth sets" and prior use in tool training limits their utility for evaluation of tool performance.
Methods: We created a truth set of 9,436 missense variants classified as deleterious or tolerated in clinically validated high-throughput functional assays for BRCA1, BRCA2, MSH2, PTEN, and TP53 to evaluate predictive performance for 44 recommended/commonly used in silico tools.
Results: Over two-thirds of the tool-threshold combinations examined had specificity of <50%, thus substantially overcalling deleteriousness. REVEL scores of 0.8-1.0 had a Positive Likelihood Ratio (PLR) of 6.74 (5.24-8.82) compared to scores <0.7 and scores of 0-0.4 had a Negative Likelihood Ratio (NLR) of 34.3 (31.5-37.3) compared to scores of >0.7. For Meta-SNP, the equivalent PLR = 42.9 (14.4-406) and NLR = 19.4 (15.6-24.9).
Conclusion: Against these clinically validated "functional truth sets," there was wide variation in the predictive performance of commonly used in silico tools. Overall, REVEL and Meta-SNP had best balanced accuracy and might potentially be used at stronger evidence weighting than current ACMG/AMP prescription, in particular for predictions of benignity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553612 | PMC |
http://dx.doi.org/10.1038/s41436-021-01265-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!