Differentiation of embryonic stem cells into a putative hair cell-progenitor cells via co-culture with HEI-OC1 cells.

Sci Rep

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.

Published: July 2021

Several studies have shown how different cell lines can influence the differentiation of stem cells through co-culture systems. The House Ear Institute-Organ of Corti 1 (HEI-OC1) is considered an important cell line for in vitro auditory research. However, it is unknown if HEI-OC1 cells can promote the differentiation of embryonic stem cells (ESCs). In this study, we investigated whether co-culture of ESCs with HEI-OC1 cells promotes differentiation. To this end, we developed a co-culture system of mouse ESCs with HEI-OC1 cells. Dissociated or embryonic bodies (EBs) of ESCs were introduced to a conditioned and inactivated confluent layer of HEI-OC1 cells for 14 days. The dissociated ESCs coalesced into an EB-like form that was smaller than the co-cultured EBs. Contact co-culture generated cells expressing several otic progenitor markers as well as hair cell specific markers. ESCs and EBs were also cultured in non-contact setup but using conditioned medium from HEI-OC1 cells, indicating that soluble factors alone could have a similar effect. The ESCs did not form into aggregates but were still Myo7a-positive, while the EBs degenerated. However, in the fully differentiated EBs, evidence to prove mature differentiation of inner ear hair cell was still rudimentary. Nevertheless, these results suggest that cellular interactions between ESCs and HEI-OC1 cells may both stimulate ESC differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260610PMC
http://dx.doi.org/10.1038/s41598-021-93049-3DOI Listing

Publication Analysis

Top Keywords

hei-oc1 cells
28
cells
12
stem cells
12
escs hei-oc1
12
differentiation embryonic
8
embryonic stem
8
cells co-culture
8
hei-oc1
8
escs
8
hair cell
8

Similar Publications

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

ARC protects cochlear hair cells from neomycin-induced ototoxicity via the Ras/JNK signaling pathway.

Toxicol Lett

January 2025

Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China. Electronic address:

The present study was designed to investigate the role and mechanism of the Apoptosis repressor with caspase recruitment domain (ARC) in protecting the neomycin-induced hair cell damage. HEI-OC1 cells and basilar membrane culture were applied to determine the effect of ARC. Plasmid transfection was used to regulate the ARC or Ras expression.

View Article and Find Full Text PDF

New application of ombuoside in protecting auditory cells from cisplatin-induced ototoxicity via the apoptosis pathway.

Heliyon

October 2024

Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China.

Hearing loss is caused by many factors including ototoxic drug-induced hair cell damage. Ombuoside, an antioxidant isolated from , has been suggested to serve as a new neuroprotective drug. However, the role of ombuoside in protecting inner ear hair cells from ototoxic drug-induced damage has not been investigated.

View Article and Find Full Text PDF

The potential role of the SIRT1-Nrf2 signaling pathway in alleviating hidden hearing loss via antioxidant stress.

Cell Biol Int

December 2024

Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, China.

Hidden hearing loss (HHL) is characterized by normal audiometric thresholds but impaired auditory function, particularly in noisy environments. In vivo, we employed auditory brainstem response (ABR) testing and ribbon synapses counting to assess changes in mouse hearing function, and observed the morphology of hair cells through scanning electron microscopy. SRT1720 was administered to the cochlea via round window injection.

View Article and Find Full Text PDF

Cisplatin is widely used in anti-tumor therapy, but the ototoxicity caused by high-dose cisplatin often limits its efficacy, and the specific mechanism of cisplatin-induced cochlear damage is still not perfect. The Wnt/β-catenin signaling pathway is closely related to aging, embryonic development, and apoptosis. Meanwhile, B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1) plays a certain role in the evolution and development of the inner ear and the occurrence and development of inner ear-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!