Heart rate variability predicts decline in sensorimotor rhythm control.

J Neural Eng

Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany.

Published: July 2021

Voluntary control of sensorimotor rhythms (SMRs, 8-12 Hz) can be used for brain-computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man-machine interaction scheme.Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased.While control performance (= .18) and HRV (= .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: -0.61%/10 s,= 0; HRV: -0.007 ms/10 s,< .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level (< .001).These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ac1177DOI Listing

Publication Analysis

Top Keywords

bci control
20
control performance
20
predict decline
12
control
11
heart rate
8
rate variability
8
stroke survivors
8
instructed engage
8
decline bci
8
smr-erd control
8

Similar Publications

Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.

View Article and Find Full Text PDF

Real-world implementation of brain-computer interfaces (BCI) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control, but presents a challenge: how do we know when it is appropriate to decode anything at all? Activity in motor cortex is dynamic and modulates with many different types of actions (proximal arm control, hand control, speech, etc.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Objective: The RSVP Keyboard is a non-implantable, event-related potential-based brain-computer interface (BCI) system designed to support communication access for people with severe speech and physical impairments. Here we introduce Inquiry Preview, a new RSVP Keyboard interface incorporating switch input for users with some voluntary motor function, and describe its effects on typing performance and other outcomes.

Approach: Four individuals with disabilities participated in the collaborative design of possible switch input applications for the RSVP Keyboard, leading to the development of Inquiry Preview and a method of fusing switch input with language model and electroencephalography (EEG) evidence for typing.

View Article and Find Full Text PDF

A Bayesian dynamic stopping method for evoked response brain-computer interfacing.

Front Hum Neurosci

December 2024

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.

Introduction: As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!