Bicyclol ameliorates nonalcoholic fatty liver disease in mice via inhibiting MAPKs and NF-κB signaling pathways.

Biomed Pharmacother

Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China. Electronic address:

Published: September 2021

Bicyclol has been approved as an anti-inflammatory, hepatoprotective drug in China to treat various forms of hepatitis. However, the role of bicyclol in non-alcoholic fatty liver disease (NAFLD) is unknown. In this study, NAFLD model was established by feeding mice with high fat diet (HFD) for 16 weeks, and bicyclol (25 and 50 mg/kg) were orally administered for the last 4 weeks. Although bicyclol treatment did not change the body weight of mice, bicyclol administration significantly improved HFD-induced dyslipidemia, NAFLD activity score, hepatic apoptosis, systemic and hepatic inflammation, and liver fibrosis in the mice. Moreover, bicyclol treatment significantly inhibited HFD-induced activation of MAPKs and NF-κB signaling pathways that may mediate the inflammatory responses. Further in vitro studies showed that bicyclol pretreatment markedly ameliorated PA-induced inflammatory responses in human hepatocyte HL-7702 cells and mouse peritoneal macrophages through inhibiting MAPKs and NF-κB signaling pathways. These data indicated that bicyclol may have the potency to treat NAFLD by reducing inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111874DOI Listing

Publication Analysis

Top Keywords

mapks nf-κb
12
nf-κb signaling
12
signaling pathways
12
bicyclol
9
fatty liver
8
liver disease
8
inhibiting mapks
8
weeks bicyclol
8
bicyclol treatment
8
mice bicyclol
8

Similar Publications

Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells.

J Recept Signal Transduct Res

January 2025

Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.

The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR).

View Article and Find Full Text PDF

Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43.

J Biol Chem

January 2025

Department of Biological Sciences, Moravian University, 1200 Main Street, Bethlehem, PA 18018, USA. Electronic address:

Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.

View Article and Find Full Text PDF

Osteoporosis is characterized by increased osteoclast activity, which is strongly associated with increased levels of reactive oxygen species (ROS). Fraxin, a natural coumarin glycoside, has shown anti-inflammatory and antioxidant properties, but its effects on bone homeostasis are obscure. The effects of fraxin on osteoclast formation and activation were measured via an in vitro osteoclastogenesis assay.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Mining genomic regions associated with stomatal traits and their candidate genes in bread wheat through genome-wide association study (GWAS).

Theor Appl Genet

January 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!