Water-sediment interactions and mobility of heavy metals in aquatic environments.

Water Res

Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; Centre for the Environment, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia. Electronic address:

Published: September 2021

The adsorption-desorption behaviour of heavy metals in aquatic environments is complex and the processes are regulated by the continuous interactions between water and sediments. This study provides a quantitative understanding of the effects of nutrients and key water and sediment properties on the adsorption-desorption behaviour of heavy metals in riverine and estuarine environments. The influence levels of the environmental factors were determined as conditional regression coefficients. The research outcomes indicate that the mineralogical composition of sediments, which influence other sediment properties, such as specific surface area and cation exchange capacity, play the most important role in the adsorption and desorption of heavy metals. It was found that particulate organic matter is the most influential nutrient in heavy metals adsorption in the riverine environment, while particulate phosphorus is more important under estuarine conditions. Dissolved nutrients do not exert a significant positive effect on the release of heavy metals in the riverine area, whilst dissolved phosphorus increases the transfer of specific metals from sediments to the overlying water under estuarine conditions. Furthermore, the positive interdependencies between marine-related ions and the release of most heavy metals in the riverine and estuarine environments indicate an increase in the mobility of heavy metals as a result of cation exchange reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117386DOI Listing

Publication Analysis

Top Keywords

heavy metals
32
metals riverine
12
metals
9
heavy
8
mobility heavy
8
metals aquatic
8
aquatic environments
8
adsorption-desorption behaviour
8
behaviour heavy
8
sediment properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!