Zwitterionic peptides emerge as a class of highly effective antifouling material in a wide range of applications such as biosensors, biomedical devices, and implants. We incorporated neutral amino acid spacers with different hydrophobicities, including serine (Ser), glycine (Gly), and leucine (Leu), into zwitterionic peptides with lysine-glutamic acid repeating units and investigated the structure and antifouling performance of the zwitterionic peptide brushes by surface plasma resonance, surface force apparatus (SFA), and all-atomistic molecular dynamics (MD) simulation techniques. Our results demonstrate that the hydrophilicity of neutral spacers alters the structure and antifouling performance of the peptide-modified surface. Hydrophilic Ser-inserted peptides reduced the interaction between the peptide monolayer and protein foulants, while hydrophobic Leu significantly increased the protein adhesion. SFA force measurements show that the presence of more spacers would increase the adhesion between the peptide monolayer and the modeling foulant lysozyme, especially for the hydrophobic spacers. MD simulations reveal that hydrophilic Ser spacers retain the hydrophilicity of the peptide monolayer and improve the antifouling performance, and Gly spacers give rise to more interchain cross-links. Leu spacers result in a more hydrophobic peptide monolayer, which leads to dehydration of the peptide monolayer and reduces the antifouling performances.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c00803DOI Listing

Publication Analysis

Top Keywords

peptide monolayer
20
zwitterionic peptides
12
antifouling performance
12
structure antifouling
8
spacers
7
antifouling
6
peptide
6
monolayer
5
hydrophobicity charge
4
charge separation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!