Near-Infrared Small Molecule as a Specific Fluorescent Probe for Ultrasensitive Recognition of Antiparallel Human Telomere G-Quadruplexes.

ACS Appl Mater Interfaces

Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.

Published: July 2021

In the past 10 years, many fluorescent probes have been developed to recognize G-quadruplexes (G4s) since G4s play an important role in biological systems. However, the selectivity and sensitivity of existing probes for G4s limit their further applications. Herein, we design and synthesize a new probe (TOVJ) by introducing 9-vinyljulolidine into TO. The new probe exhibits almost no fluorescence in an aqueous solution. Upon interacting with G4s, especially the antiparallel G4s, the fluorescence intensity was greatly enhanced (maximum 2742-fold) with a large Stokes shift of 198 nm and the maximum emission peak at 694 nm (near-infrared region). TOVJ showed high sensitivity and selectivity to G4s over other DNA topologies (ssDNA/dsDNA), especially to antiparallel G4s. For antiparallel human telomere G4 detection, the limits of detection of Hum24 and 22AG Na were as low as 164 and 231 pM, respectively. This indicates that TOVJ is a highly sensitive fluorescence sensor that can be effectively used for antiparallel human telomere G4 detection. The result of live-cell imaging showed that TOVJ could enter live cells and locate in the mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07101DOI Listing

Publication Analysis

Top Keywords

antiparallel human
12
human telomere
12
g4s antiparallel
8
antiparallel g4s
8
telomere detection
8
g4s
7
antiparallel
5
near-infrared small
4
small molecule
4
molecule specific
4

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

The tumor suppressor PALB2 is a key player in the Homologous Recombination (HR) pathway, functionally connecting BRCA proteins at the DNA damage site. PALB2 forms homodimers via its coiled-coil domain, and during HR, it forms a heterodimeric complex with BRCA1 using the same domain. However, the structural details of the human PALB2 coiled-coil domain are unknown.

View Article and Find Full Text PDF

Influenza A viruses are responsible for human seasonal epidemics and severe animal pandemics with a risk of zoonotic transmission to humans. The viral segmented RNA genome is encapsidated by nucleoproteins (NP) and attached to the heterotrimeric polymerase, forming the viral ribonucleoproteins (vRNPs). Flexible helical vRNPs are central for viral transcription and replication.

View Article and Find Full Text PDF

Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!